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1   |   INTRODUCTION

Filters are essential in research using event-related poten-
tials (ERPs). At a minimum, a low-pass filter must be ap-
plied in hardware prior to digitizing the continuous EEG 
signal so that aliasing can be avoided (Picton et al., 2000). 
Low-pass filters can also minimize muscle artifacts and 
induced electrical noise (de Cheveigné & Nelken,  2019; 
Luck, 2014), and high-pass filters can significantly improve 
statistical power by reducing skin potentials (Kappenman 
& Luck,  2010). However, a strong filter may reduce the 
amplitude of the ERP component of interest as well as at-
tenuate noise. Moreover, inappropriate filter settings can 
create temporal smearing, artifactual deflections, or bogus 

oscillations in the ERP waveform, potentially leading to 
erroneous conclusions (Acunzo et al., 2012; de Cheveigné 
& Nelken,  2019; Rousselet,  2012; Tanner et  al.,  2015; 
Vanrullen, 2011; Widmann et al., 2015; Yeung et al., 2007).

What, then, are the ideal filter settings for a given 
study? Although some recommendations have been pro-
posed (e.g., Duncan et  al.,  2009; Luck,  2014; Widmann 
et al., 2015), the existing cognitive and affective ERP litera-
ture does not provide a clear, complete, and quantitatively 
justified answer to this question. This is partly because 
different filter settings may be optimal for different ex-
perimental paradigms, participant populations, scoring 
methods, and scientific questions. As a result, the range 
of filter settings used in published ERP research varies 
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widely across laboratories and often within a laboratory, 
presumably based on a combination of empirical testing, 
mathematical understanding (or misunderstanding) of 
filtering, and lab lore.

The goal of the present paper is to provide a principled 
and straightforward approach for determining optimal fil-
ter settings. The approach is conceptually simple: A set of 
filters are evaluated, and the optimal filter is the one that 
maximizes the data quality without producing unaccept-
able levels of waveform distortion. However, this requires 
methods for quantifying the data quality for a specific am-
plitude or latency score and methods for assessing wave-
form distortion. Our approach includes methods for each 
of these steps.1

A companion paper (Zhang et al., 2024) uses this ap-
proach to provide recommendations for seven commonly 
used ERP components combined with four different scor-
ing methods (mean amplitude, peak amplitude, peak la-
tency, and 50% area latency). That paper uses data from 
the ERP CORE (Compendium of Open Resources and 
Experiments; Kappenman et  al.,  2021), which includes 
data from 40 young adults who performed six standard-
ized paradigms that yielded seven commonly studied ERP 
components.

However, the optimal filter settings for those data 
may not be optimal for different populations of partic-
ipants (e.g., infants), different recording setups (e.g., 
dry electrodes), or different ERP components (e.g., 
the contingent negative variation). For example, data 
quality for the error-related negativity is much poorer 
in young children (Isbell & Grammer,  2022) than in 
adults (Kappenman et al., 2021), and this may necessi-
tate different filter settings. The present paper therefore 
describes in detail how researchers can apply this ap-
proach to their own data. To make this approach easy 
to implement, we have also added new tools to version 
9.2 and higher of ERPLAB Toolbox (Lopez-Calderon & 
Luck, 2014). Our approach can be implemented either 
through ERPLAB's graphical user interface or through 
scripting, and we have also provided example scripts at 
https://​osf.​io/​98kqp/​​.

Our intention is for this paper to be useful for research-
ers from a broad variety of backgrounds, whether or not 
they have any technical expertise with signal processing. 
Consequently, the technical details have been deempha-
sized in the main text and can be found in footnotes, sup-
plementary materials, or the cited papers.

2   |   REVIEW OF BASIC FILTER 
PROPERTIES

We first review the basic frequency-domain properties 
of the kinds of filters used most often in ERP research 
(see Widmann et  al.,  2015, for a more detailed over-
view). Figure 1 shows the frequency response functions 
of several different filters along with their effects on 
an example averaged ERP waveform. Figure  1a shows 
low-pass filters (which pass low frequencies and attenu-
ate high frequencies), and Figure  1b shows high-pass 
filters (which pass high frequencies and attenuate low 
frequencies). In the ERP waveforms, the low-pass filters 
mainly appear to “smooth” the waveform, whereas the 
high-pass filters mainly appear to reduce the amplitude 
of the P3 wave.

The frequency response functions characterize how 
the filters impact the frequency content of the data. The 
horizontal axis is frequency, and the vertical axis is gain. 
The gain indicates the extent to which a given frequency 
passes through the filter rather than being attenuated. A 
gain of 1.0 means that the frequency passes through com-
pletely (no filtering); a gain of 0.75 means that 75% of the 
signal at that frequency passes through the filter and that 
the signal is attenuated by 25% at that frequency; a gain 
of 0.0 means that the signal is completely attenuated at 
that frequency. The frequency response function of a filter 
is often summarized with the half-amplitude cutoff fre-
quency, which is the frequency at which the gain is 0.5 and 
the signal is attenuated by 50%. The low-pass filters shown 
in Figure 1a have a half-amplitude cutoff at either 5 Hz 
or 20 Hz. The high-pass filters shown in Figure 1b have 
a half-amplitude cutoff at either 0.1 Hz or 0.5 Hz. When 
both high-pass and low-pass filters are applied, their com-
bined effects are referred to as the bandpass of the filter 
(e.g., a bandpass of 0.1–5 Hz for the combined effects of a 
0.1 Hz high-pass filter and a 5 Hz low-pass filter).

Filters are also characterized by their roll-offs, which 
specify how rapidly the gain changes as the frequency 
changes. This is often summarized by the slope of the 
filter at its steepest point, using logarithmic units of 
decibels of gain change per octave of frequency change  
(dB/octave). The filters in Figure 1 have roll-offs ranging 
from relatively shallow (12 dB/octave) to relatively steep 
(48 dB/octave). Researchers often assume that a steeper 
roll-off is better because this means that most frequencies 
are either passed nearly completely (a gain near 1.0) or 
attenuated nearly completely (a gain near 0.0). As we will 
demonstrate, however, steeper roll-offs tend to produce 
greater waveshape distortion.

Filters can be either causal (unidirectional) or non-
causal (bidirectional). Causal filters create a right-
ward shift in the waveform and are typically avoided 

 1The general idea of choosing filters that maximize the data quality and 
avoid waveform distortion has been explored in the context of auditory 
sensory responses, but with quantification approaches that reflect the 
specific issues involved in that domain (e.g., identifying whether a 
sensory response was present). See Pictonet al., (2000) for a review.
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except under specific conditions (Rousselet,  2012; 
Woldorff,  1993). All filters used here were therefore 
noncausal.

Although filters can be extremely valuable in attenu-
ating noise, they inevitably distort the time course of the 
ERP waveform (see Luck,  2014; Widmann et  al.,  2015). 
Low-pass filters typically “smear” the waveform, caus-
ing ERP components to begin artificially early and end 
artificially late. This is illustrated for a simulated N170 

waveform in Figure 1e. When a 5 Hz low-pass filter was ap-
plied to the simulated waveform, the onset of the compo-
nent was shifted earlier in time and the offset was shifted 
later in time. By contrast, high-pass filters typically pro-
duce artifactual opposite-polarity deflections before and 
after an ERP component. For example, Figure  1f shows 
that applying a 2 Hz high-pass filter produced artifactual 
positive peaks before and after the simulated N170 com-
ponent. Thus, it is important to consider the time-domain 

F I G U R E  1   Frequency response functions for several filters and their application to a single-participant ERP waveform and to a 
simulated N170 waveform. The frequency response functions quantify the extent to which a given frequency is passed versus blocked by 
the filter. (a) Frequency response functions for low-pass filters. Two cutoff frequencies are shown (5 and 20 Hz), combined with four roll-
off slopes (12, 24, 36, and 48 dB/octave). (b) Frequency response functions for high-pass filters. Two cutoff frequencies are shown (0.1 and 
0.5 Hz), combined with four roll-off slopes (12, 24, 36, and 48 dB/octave). (c) Averaged ERP waveform with different half-amplitude low-pass 
filter cutoffs (no filter, 5, 10, and 20 Hz, all with slopes of 12 dB/octave). (d) The same averaged ERP waveform with different half-amplitude 
high-pass filter cutoffs (no filter, 0.1, 0.5, and 2 Hz, all with slopes of 12 dB/octave). (e) and (f) Simulated N170 waveform filtered by a 5 Hz 
low-pass filter and 2 Hz high-pass filter (12 dB/octave). Note that the filters used for (c) and (d) were applied to the continuous EEG data 
prior to epoching and averaging. All filters used here were noncausal Butterworth filters, and cutoff frequencies indicate the half-amplitude 
point. The waveforms in (c) and (d) were from the face condition in the ERP CORE N170 paradigm, Subject 40, CPz electrode site.
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waveform distortion produced by a filter as well as the fil-
ter's frequency-domain properties.

3   |   OVERVIEW OF THE PRESENT 
APPROACH

In this section, we provide a brief overview of our approach 
to determining optimal filter parameters. The following sec-
tions will provide a more detailed explanation and justifica-
tion. We assume that the component of interest in a given 
study can be isolated from other ERP components by means 
of a difference wave; Section 8.3 will discuss how our ap-
proach can be modified if this assumption is not valid.

Figure  2 provides a flowchart for our approach when 
the score of interest is an amplitude score (e.g., N170 peak 
amplitude). Section  7 will discuss how the procedure is 
modified for latency scores (e.g., N170 peak latency). The 
approach consists of two parallel streams of analysis, one 
examining the effects of a set of candidate filters on data 
quality and another examining the effects of the candi-
date filters on waveform distortion. For amplitude mea-
sures, data quality is quantified using a special version of 
the signal-to-noise ratio (SNR), and waveform distortion is 
quantified using the relative size of the artifactual peaks 
produced by the filter (the artifactual peak percentage or 
APP). An SNR value and an APP value are obtained for 
each candidate filter, and the filter that produces the best 
SNR without exceeding a criterion for waveform distortion 
is selected as the optimal filter. Note that this general pro-
cedure could be used with a different metric of data qual-
ity, a different metric of waveform distortion, or a different 
threshold for waveform distortion.

The set of candidate filters can be chosen by examining 
the range of filters used in prior research. Alternatively, it 
can be chosen by starting with a broad set of combinations 
of low-pass and high-pass filters, determining the general 
range of parameters that yield good results, and then repeat-
ing the with a finer set of combinations within that range.

Ordinarily, one set of data should be used to select the op-
timal filter parameters, and then those parameters should be 
applied to new data. If the optimal filters are selected on the 
basis of one set of data are then applied to the same data, this 
“double dipping” will likely increase the false positive rate. 
There may be exceptions, but a careful justification would be 
needed before applying the parameters to the same dataset 
that was used to select the parameters. The previous studies 
used to determine the filter parameters need not be identical 
to the study of interest: reasonable filtering parameters can 
be chosen as long as prior recordings are available that con-
tain reasonably similar waveforms and noise levels. We have 
also added options in ERPLAB's Channel Operations tools 
that allow users to add noise of various types to prior data.

4   |   DEFINING AND 
QUANTIFYING THE 
SIGNAL-TO -NOISE RATIO

This section describes our approach to estimating the data 
quality resulting from a given set of filter parameters (the 
left side of Figure 2). We use the signal-to-noise ratio as 
our metric of data quality because filters can decrease 
the size of the signal as well as reduce the noise, and it 
is important to determine whether the reduction in noise 
outweighs the loss of signal. Although the concept of SNR 
has been used in ERP research for many decades, it is not 
simple to define and quantify either the signal or the noise 
in a way that is truly useful. This section therefore pro-
vides a new way of visualizing, defining, and quantifying 
the signal, the noise, and the SNR.

The signal portion of the SNR is usually framed in 
terms of the amplitude of the signal, so we will focus on 
ERP amplitudes for the next several sections. A slightly 
different approach is required for ERP latencies, as de-
scribed in Section 7.

4.1  |  An informal visualization of the 
effects of filters on signal and noise

The logic behind applying high-pass and low-pass filters to 
EEG/ERP data is that some types of noise are confined to 
relatively low frequencies (e.g., skin potentials), whereas 
other types of noise are confined to relatively high fre-
quencies (e.g., line noise and muscle artifacts). The sig-
nal of interest (i.e., the neural activity) typically has less 
power than the noise in the very low frequencies and/or 
the very high frequencies, so attenuating these frequen-
cies may reduce the noise more than it reduces the signal. 
This subsection provides visualizations of how filtering 
reduces both the signal and the noise.

To illustrate the loss of signal, Figure  1c shows the 
effects of low-pass filters with different cutoffs2 on an 
averaged ERP waveform. These filters “smoothed” out 
the high-frequency noise, but reducing the low-pass cut-
off frequency also reduced the P1 and N1 amplitudes. 
These low-pass filters had less impact on the amplitude 
of the P3 wave. In general, low-pass filters will decrease 
the amplitude of fast, narrow waves such as P1 and N1, 
with less impact on slow, and broad waves such as P3 
and N400.

 2Many different filtering algorithms are available, but for simplicity we 
focus on noncausal Butterworth filters (Hamming, 1998). This class of 
filters was chosen because it is efficient, flexible, well-behaved, and 
widely used for EEG and ERP signals. However, our general approach 
is independent of the filtering algorithm.
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Figure 1d shows the effects of high-pass filtering on the 
same averaged ERP waveform. P3 amplitude declined as 
the cutoff frequency increased. However, P1 and N1 am-
plitudes were largely unaffected until the cutoff reached 
2.0 Hz. In general, high-pass filters will decrease the am-
plitude of the longer-latency, broader waves but will have 
less impact on shorter-latency, narrower waves.

Although low-pass filters produce a clearly visible 
reduction in high-frequency noise in the averaged ERP 
waveforms (as in Figure 1c), the noise reduction produced 
by high-pass filters is not usually obvious in the averaged 
ERP waveform (as in Figure 1d). The effects of high-pass 
filtering can be more easily visualized by looking at the 

single-trial EEG epochs, as illustrated in Figure  3. Slow 
drifts in the EEG (Figure  3a) cause the single-trial EEG 
waveforms to tilt upward on some trials and downward 
on other trials. Because the epochs are baseline-corrected 
using the prestimulus period, the trial-to-trial variability 
in voltage increases progressively over the course of the 
epoch. In the corresponding averaged ERP waveform 
(Figure 3b), this leads to a progressive increase in the stan-
dard error of the mean over the course of the epoch. Note 
that the participant shown in Figure 3 had unusually large 
low-frequency drifts, which makes the slow voltage drifts 
easier to see. However, virtually all participants exhibit 
increasing drift and an increasing standard error of the 

F I G U R E  2   Flowchart of procedure for selecting the optimal filter for an ERP amplitude score. For latency scores, the noise is used 
instead of the signal-to-noise ratio, and the filter with the lowest RMS(SME) is chosen from among those that yield an artifactual peak 
percentage of less than 5%. If there is reason to believe that the grand average difference waveform is not a good reflection of the true effect, 
the right side of the flowchart can be repeated with multiple different simulated ERP waveforms that reflect the range of possibilities.
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mean over the course of the epoch if the prestimulus in-
terval is used for baseline correction. These low-frequency 
drifts add uncontrolled variability to the averaged ERP 
waveforms, and this can cause a dramatic reduction in sta-
tistical power, especially for later components that are far-
ther away from the baseline period (Acunzo et al., 2012; 
Hennighausen et al., 1993; Kappenman & Luck, 2010).

Drift in the single-trial EEG can be dramatically re-
duced by applying a 0.5 Hz high-pass filter to the EEG 
(Figure 3d), and this also reduces the standard error of the 
mean, especially later in the epoch (Figure 3e). Thus, low-
frequency drift is a threat to statistical power but can be 
minimized by high-pass filtering.

4.2  |  The classic 
definition of signal-to-noise ratio 
(SNR) and its limitations

Now that we have seen how filters can influence both 
the signal and the noise, we will consider how to quan-
tify the signal-to-noise ratio (SNR). Classically, the SNR 
in ERP research is defined separately at each individual 
time point in the averaged ERP waveform. The signal is 

the amplitude of the averaged waveform at a given time 
point, and the noise is quantified by some measure of trial-
to-trial variability at that time point (Picton et al., 2000). 
Each point in an averaged ERP waveform is the mean of 
the single-trial voltages at that time point, so the standard 
error of the mean is a natural way to quantify the noise. 
Thus, the SNR at a given time point can be quantified as 
the amplitude at that time point (the signal) divided by the 
standard error of the mean at that time point (the noise). 
The standard error of the mean (SEM) is typically esti-
mated using Equation (1):

where SD is the standard deviation of the single-trial ampli-
tudes at that time point and N is the number of trials being 
averaged together. Because the standard error of the mean 
is linearly related to 

√

N , this definition of the SNR explains 
why the SNR of an averaged ERP waveform improves lin-
early with 

√

N .
In Figure 3b,e, we could compute the SNR at each time 

point by dividing the amplitude of the averaged ERP at that 
time point by the standard error of the mean at that time 
point. However, the SNR at individual time points is not 

(1)SEM = SD∕
√

N ,

F I G U R E  3   Examples of single-trial EEG epochs, averaged ERP waveforms, and standardized measurement error (SME) values without 
filtering (top row) and after application of a high-pass filter with a half-amplitude cutoff at 0.5 Hz (bottom row). The SME was calculated 
for the mean amplitude in consecutive 100-ms time periods, for mean amplitude in the P3 measurement window (300–600 ms), and for 
peak amplitude in the P3 measurement window. The shaded region for the ERP waveforms reflects the standard error of the mean at each 
individual time point. The filter was a noncausal Butterworth filter with a slope of 12 dB/octave. The data were from the standard condition 
in the ERP CORE visual oddball paradigm, Subject 40, Pz electrode site.
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particularly useful in most ERP research, because most 
studies derive amplitude and latency scores from the pat-
tern of voltages across multiple time points. For example, 
the size of mismatch negativity (MMN) component in the 
ERP CORE (Kappenman et al., 2021) was measured as the 
mean voltage from 125 to 225 ms in the deviant-minus-
standard difference waves. Because this is the type of score 
that is typically entered into statistical analyses and used 
to test the hypotheses of a study, the SNR of a given score 
is much more important than the SNR at individual time 
points (except when mass univariate analyses are used). 
However, there is no simple mathematical relationship be-
tween the SNR of a score that is derived from multiple time 
points and the SNR at the individual time points.

In addition, the effect of a given filter will depend on 
what scoring method is being used (e.g., mean amplitude 
vs peak amplitude). For example, when the mean voltage 
over a reasonably wide time window is used to score the 
amplitude of an ERP component, high-frequency noise has 
relatively little impact on the score. This is illustrated in 
Figure 4a,b, which shows a simulated ERP waveform with 
and without high-frequency noise. The rapid upward and 
downward noise deflections within the measurement win-
dow tend to cancel each other out, and the mean amplitude 
from 300 to 500 ms in the noisy waveform is similar to the 
mean amplitude from 300 to 500 ms in the clean waveform. 
However, the peak amplitude is strongly affected by the 
high-frequency noise. High-frequency noise will also have 
a substantial impact on peak latency scores. By contrast, 
low-frequency noise has a modest impact on peak latency 
scores but a large impact on mean amplitude and peak 
amplitude scores. Thus, there is no such thing as a generic 
metric of noise; the noise must be defined with respect to 
the specific method used to score the amplitude or latency. 
When choosing a filter, it is therefore essential to consider 

how the averaged ERP waveform will be scored and how 
the filter will impact the SNR of that specific score.

A partial solution to this problem is to define the 
signal as the mean voltage during the time window of 
interest and the noise as the standard deviation of the 
voltage across the points during the baseline period 
(e.g., Debener et  al.,  2008; Klug & Gramann,  2021). 
However, this is relevant only for mean amplitude 
scores and does not apply to other scoring methods (e.g., 
peak amplitude, peak latency). In addition, there is no 
guarantee that the noise level will remain constant be-
tween the baseline period and the time window of in-
terest. The noise might increase owing to low-frequency 
drifts (as in Figure  3a), or it might decrease owing to 
stimulus-induced suppression of alpha-band activity 
(Klimesch, 2012). In addition, it is difficult to estimate 
the effects of low-frequency noise in the prestimulus in-
terval, where low-frequency drifts are minimized by the 
baseline correction procedure. Indeed, we have found 
that the baseline noise level often provides a misleading 
estimate of the noise that impacts a given amplitude or 
latency score (see, e.g., Figure S4 in Luck et al., 2021). 
Thus, we need a means of quantifying the SNR that can 
apply to any scoring method and that directly reflects 
the noise that impacts the score of interest.

4.3  |  Using the standardized 
measurement error (SME) to estimate the 
SNR for ERP amplitude scores

A new definition of SNR that meets these criteria was 
recently proposed by Luck et  al.  (2021). The signal is 
straightforward: It can be estimated by the score itself 
(although a caveat will be described in Section 4.4). For 

F I G U R E  4   Simulated ERP waveform without noise (a) and with high-frequency noise added (b). This high-frequency noise had very 
little impact on the mean amplitude during this window because the upward and downward noise deflections largely canceled each other. 
However, the noise had a large impact on the peak amplitude.
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example, when MMN peak amplitude is measured from 
a deviant-minus-standard difference wave, the signal is 
the measured peak amplitude. The noise can then be esti-
mated as the standard error of measurement for that score 
(which reflects both the trial-to-trial variability and the 
number of trials being averaged together).

This is a simple generalization of the method for com-
puting the SNR at each individual time point, in which 
the standard error of the mean at a given time point was 
used to estimate the noise. The value at a given time point 
in an averaged ERP waveform is the mean of the single-
trial voltages at that time point. Because it is a mean, the 
standard error of measurement for this value is the stan-
dard error of the mean. Thus, the SNR at a given time 
point is the mean across trials at that time point divided 
by the standard error of the mean at that time point.

However, when the signal of interest is a score that is 
based on the pattern of voltages across multiple time points, 
we need to estimate the standard error of measurement for 
that particular score. Luck et al.  (2021) developed an ap-
proach for quantifying the standard error of measurement 
for ERP amplitude and latency scores, and the resulting es-
timate of the noise is called the standardized measurement 
error (SME; see Section S5 of the supplementary materials 
for a conceptual overview). Thus, the SNR for a given am-
plitude score can be quantified as the score divided by the 
SME for that score. We refer to this specific definition of 
SNR as SNRSME. As one would expect, SNRSME depends on 
the size of the score (the signal) along with the amount of 
trial-to-trial variability and the number of trials (which are 
combined together in the SME).

Equation  (1) can be used to estimate the SME when 
the amplitude of an ERP component is scored as the mean 
voltage within a given time window in an averaged ERP 
waveform (Luck et  al.,  2021). That is, the mean voltage 
across the time period is scored for each individual trial, 
and Equation (1) is applied to these values. When estimated 
using this simple analytic approach, the result is called 
the analytic SME or aSME. Unfortunately, this simple ap-
proach is not valid for other scoring methods, such as peak 
amplitude. For those scoring methods, Luck et  al.  (2021) 
developed a bootstrapping method for estimating the SME. 
The result is called the bootstrapped SME or bSME. Our 
bootstrapping procedure is described in Section S6 of the 
supplementary materials. Note that the SME assumes that 
the score of interest will be obtained from averaged ERPs, 
not from single trials. Some other yet-to-be-developed ap-
proaches would be needed when single-trial scores are used 
as the dependent variable in statistical analyses.

The aSME is automatically computed by version 8.1 
and later of ERPLAB Toolbox. Computing the bSME cur-
rently requires MATLAB scripting, but the scripts are rela-
tively simple, and example scripts are available at https://​

doi.​org/​10.​18115/​​D58G91. In addition, the ERP CORE re-
source contains SME values and the code required to com-
pute them for all seven ERP components (https://​doi.​org/​
10.​18115/​​D5JW4R; see Zhang & Luck, 2023).

No matter how the SME is computed, it is an estimate of 
the standard error of measurement for the score of interest, 
and it can therefore be used as the noise term when comput-
ing the SNRSME. For example, P3 amplitude in the ERP CORE 
was scored as the mean amplitude from 300 to 600 ms in the 
target-minus-standard difference waves, and the SNRSME for 
P3 amplitude is this score divided by the SME of the score.

Using this approach, the SNRSME can be estimated for 
both filtered and unfiltered data to determine the extent 
to which a given filter increases or decreases the signal-
to-noise ratio. This is illustrated in the rightmost column 
of Figure 3. When P3 amplitude was scored as the mean 
amplitude from 300 to 600 ms in the unfiltered data, the 
score was 6.62 μV (see Figure 3b) and the SME of this score 
was 2.90 μV (see Figure  3c). The SNRSME was therefore 
6.62/2.90 or 2.28. When the peak amplitude was scored in-
stead, the score was 11.74 μV and the SME of this score was 
2.24 μV, yielding an SNRSME of 11.74/2.24 or 5.24. After a 
0.5 Hz high-pass filter was applied (Figure 3d–f), the mean 
amplitude and peak amplitude scores were slightly smaller 
than before (4.50 and 9.05 μV, respectively). However, the 
SME values were reduced by a much greater amount (to 
0.80 and 0.95 μV, respectively). Consequently, the SNRSME 
was almost doubled by the filtering to 5.63 for mean ampli-
tude and 9.53 for peak amplitude.

This example shows how we can determine which fil-
ter parameters lead to the best signal-to-noise ratio. To our 
knowledge, this is the first method that can quantify how 
filters impact the SNR of the actual amplitude scores that 
are used to test hypotheses in most cognitive and affective 
ERP experiments.

As shown in the flowchart in Figure 2, the SNRSME can 
be computed for each candidate filter to determine which 
filter yields that best data quality. The following sections 
provide some important details about how the signal is 
defined and how single-participant SNRSME values should 
be aggregated across conditions and across participants. 
In addition, it is important to keep in mind that the SNR is 
not the only factor that should be considered when choos-
ing a filter. In particular, Section 6 will show that a filter 
with a better SNRSME may produce more waveform distor-
tion than a filter with a worse SNRSME.

4.4  |  Improving the estimate  
of the signal

Although it is straightforward to use the amplitude score 
as the signal in the SNRSME calculation, these scores are 
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distorted by any noise in the averaged ERP waveform 
and are therefore an imperfect estimate of the signal. For 
example, Figure  4 shows that high-frequency noise will 
cause the peak amplitude to be overestimated, which will 
then lead to an overestimate of the SNRSME. Filtering out 
the high-frequency noise will decrease the peak ampli-
tude, bringing it closer to the true value, but this might 
create the illusion that filtering has decreased the signal-
to-noise ratio.

A simple solution to this problem is to obtain the score 
from the grand average ERP waveform, which typically 
has much less noise than the single-participant wave-
forms. This score could then be divided by the SME for a 
given participant to estimate the SNRSME for that partici-
pant. To obtain a group SNRSME, the score from the grand 
average would be divided by an aggregate of the single-
participant SME values (see Section 4.7).

Obtaining the score from the grand average is not 
a perfect solution, because some noise will remain in 
the grand average and contribute to the estimate of the 
signal. This residual noise is often negligible, but when 
substantial noise remains in the grand average an artifi-
cial ERP waveform can instead be used to estimate the 
signal (see Section 5). We found nearly identical results 
for the ERP CORE data when measuring the signal from 
the grand average or from artificial waveforms, so we 
used the grand average when calculating the SNRSME in 
the present paper and in the companion paper (Zhang 
et al., 2024).

Obtaining the score from the grand average is also 
an imperfect approach for nonlinear scoring methods, 
such as peak amplitude, because the mean of the single-
participant peaks is not the same as the peak of the 
grand average waveform. For example, if the timing of 
an ERP component varies across participants, the peak 
amplitude of the grand average ERP waveform will be 
smaller than the average of the single-participant peaks 
(even in the absence of noise). However, the goal of the 
present procedure is not to determine the true SNRSME 
but instead to determine how the SNRSME varies across 
different filter settings. The pattern of SNRSME values 
across filters is typically not impacted by the nonlinear-
ity problem, so measuring from the grand average typi-
cally works well in practice for determining the optimal 
filtering parameters.

4.5  |  Measuring from difference waves

An averaged ERP waveform is the weighted sum of 
many underlying components that overlap in time and 
space (Nunez & Srinivasan, 2006). To isolate a specific 
ERP component, many experiments focus on differences 

between experimental conditions (e.g., oddballs versus 
standards for P3 and MMN, faces versus cars for N170). 
In these cases, we recommend estimating both the sig-
nal and the SME from difference waves (e.g., oddballs-
minus-standards, faces-minus-cars). The reasoning is 
illustrated in Figure 5, which shows the grand average 
ERP waveforms from the ERP CORE N2pc experiment 
(Kappenman et al.,  2021). The N2pc component is de-
fined as the difference between the waveform at elec-
trode sites contralateral versus ipsilateral to the target 
location (indicated by yellow shading). Although this 
difference is approximately 1.5 μV, the N2pc is superim-
posed on a broad positivity arising from other ERP com-
ponents, bringing the overall voltage up to approximately 
5 μV. If we measured the signal from the contralateral 
and ipsilateral waveforms (the parent waveforms), we 
would get a value that is approximately three times as 
large as the actual 1.5 μV N2pc component. This would 
vastly overestimate the size of the signal. In addition, if 
we measured from the parent waveforms, a high-pass 
filter that reduced the broad positivity might appear to 
reduce the signal even if it had minimal impact on N2pc 
amplitude. Similarly, if we estimated the SME from the 
parent waveforms, our measure of the noise would also 
be distorted by the overlapping components.

By measuring both the signal and the SME from the 
difference waveform, we can avoid these problems and 
more directly determine how different filters impact the 
signal of interest and the noise that impacts that signal. 
Note that the signal is measured from the difference wave 
of the grand average across participants, whereas the 
noise is measured from each individual participant and 
then aggregated across participants (see Figure 2).

It is important to note that difference waves do not 
always perfectly isolate a single component. In addition, 
there may be cases in which difference waves are not avail-
able or would actually mischaracterize the effect of inter-
est. We consider these issues in Section 8.

F I G U R E  5   Grand average ERP waveforms from the ERP Core 
N2pc experiment. Separate waveforms are shown for trials where 
the target was contralateral to the electrode site and trials where 
the target was ipsilateral to the electrode site. The N2pc is defined 
as the difference in voltage between the contralateral and ipsilateral 
waveforms (denoted here by yellow shading).

−200 2000 400 ms
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6 µV
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4.6  |  Obtaining the SME of a score 
obtained from a difference wave

When an amplitude or latency score is obtained from a 
difference wave, it is ordinarily necessary to use bootstrap-
ping to estimate the SME. However, when the score of in-
terest is the mean amplitude over a fixed time window, it 
is faster and easier to obtain the analytic SME values pro-
vided by ERPLAB for the individual conditions and use 
the following equation to estimate the SME corresponding 
to the difference wave:

In this equation, SMEA-B is the SME of the difference 
between conditions A and B, and SMEA and SMEB are the 
SMEs of the two individual conditions. Note that this equa-
tion applies only when the score is the mean voltage across 
a time window. In addition, it applies only when the differ-
ence wave is between waveforms from separate trials (e.g., 
target-minus-standard for P3, unrelated minus related for 
N400), not when it is a difference between two electrode 
sites (e.g., contralateral minus ipsilateral for N2pc or later-
alized readiness potential). Additional mathematical details 
are provided in Section S8 of the supplementary materials.

4.7  |  Computing an SNRSME value that 
reflects the entire sample participants

Up to this point, we have discussed how to use the SME 
to estimate the noise level for each individual partici-
pant. However, we need a way to aggregate these values 
across participants to estimate the overall noise level for a 
given set of filter parameters. This could be accomplished 
by simply averaging the single-participant SME values. 
However, participants with particularly noisy data have 
an outsized effect on statistical power, and it is better to 
use the root mean square (RMS) of the single-participant 
SME values as the noise estimate for the group (Luck 
et al., 2021). The RMS is obtained by squaring each single-
participant SME value, taking the mean of these squared 
values, and then taking the square root of this mean:

In this equation, SMEi is the SME value for participant 
i, of the N participants after combining across conditions 
using Equation (2).

The resulting RMS(SME) value provides an aggregate es-
timate of the noise level for a given score after the application 

of a given set of filter parameters. As shown in Figure 2, the 
SNRSME value for that set of parameters is then computed 
by dividing the signal (the score obtained from the filtered 
grand average difference wave) by the RMS(SME) value.

5   |   ASSESSING WAVEFORM 
DISTORTION

This section describes our approach to estimating the 
waveform distortion produced by a given set of filter pa-
rameters (the right side of Figure 2). The most straightfor-
ward way to assess time-domain filter distortion is to pass 
an artificial waveform through the filter and compare the 
filtered and unfiltered versions of this waveform. Artificial 
waveforms must be used for this purpose because the true 
(i.e., noise-free) waveform is not usually known for real 
data, making it difficult to know if the filter is “revealing” 
the true waveform by eliminating noise or is instead cre-
ating a bogus effect that mischaracterizes the underlying 
brain activity (Yeung et al., 2007).

To create an appropriate artificial waveform, it is nec-
essary to estimate the waveshape of the real ERP effect. 
In many cases, the grand average difference wave (e.g., 
faces-minus-cars for the N170 component) provides a 
good starting point. This difference wave can be used 
to create a noise-free artificial waveform with the key 
properties of the experimental effect. If there is reason 
to believe that the grand average difference wave is not 
a good reflection of the actual waveshape, the shape of 
the artificial waveform can be systematically varied, and 
the effects of filtering can be assessed across a range of 
waveshapes. Section 8 describes strategies that can be ap-
plied if multiple components are present in the difference 
wave.

Note that the grand average waveform used as a start-
ing point for creating the simulated ERP waveform should 
be created using minimal filtering. Otherwise, it may al-
ready contain significant filter distortions.

5.1  |  Creating simulated N170 and 
P3 effects

This subsection provides examples of artificial waveforms 
that simulate two effects from the ERP CORE: (a) the 
larger N170 for faces than for cars in a visual discrimina-
tion paradigm, and (b) the larger P3 for oddballs than for 
standards in a visual oddball paradigm. We have chosen 
these two effects because they span the gamut from a rela-
tively early perceptual effect to a relatively late cognitive 
effect. These and most other ERP effects can be simulated 

(2)SMEA−B =

√

SMEA
2 + SMEB

2.

(3)RMS(SME) =

√

1

N

∑N

i=1
SMEi

2.
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with Gaussian and ex-Gaussian functions.3 Beginning in 
version 9.2, ERPLAB Toolbox provides a tool for using 
these and other functions to create artificial waveforms 
that simulate ERP components. Whereas this tool simu-
lates averaged ERP waveforms, the SEREEGA toolbox 
(Krol et al., 2018) can be used to simulate single-trial EEG 
epochs that contain ERP-like effects.

Panels a and b of Figure  6 show the grand average 
N170 and P3 effects from the ERP CORE. The N170 para-
digm involved a series of faces, cars, scrambled faces, and 
scrambled cars, and the N170 effect was defined as the 
faces-minus-cars difference. The P3 paradigm involved 
a sequence of target (rare) and standard (frequent) letter 
categories, and the P3 effect was defined as the target-
minus-standard difference. The N170 effect can be ap-
proximated by a negative-going Gaussian function with a 
mean of 129 ms and an SD of 14 ms. The P3 waveform is 
typically skewed to the right, and the ERP CORE P3 effect 

can be approximated by an ex-Gaussian function with a 
Gaussian mean of 310 ms, a Gaussian SD of 58 ms, and an 
exponential rate parameter (λ) of 2000 ms.

These simulated waveforms are overlaid on the ob-
served grand average waveforms in Figure 6a,b. They are 
not a perfect fit, but they do a reasonable job of capturing 
the key properties of the N170 and P3 components, and 
most ERP components can be approximated by Gaussian 
and ex-Gaussian functions with appropriate parameters.

Because the true waveform is not known, it may be neces-
sary to create several different artificial waveforms that reflect 
different possibilities for the true waveform. A filter can then 
be chosen that minimizes the waveform distortion for the 
entire set of simulated waveforms. In addition, some effects 
may consist of changes in multiple overlapping components. 
This can be approximated by creating simulations of the indi-
vidual components and then summing them together.

The following subsections show how the real and simu-
lated waveforms shown in Figure 6 are distorted by a low-
pass filter and a high-pass filter. We have chosen relatively 
extreme cutoff frequencies for these examples to make the 
distortions obvious. We also provide examples of the distor-
tions produced by more typical filters in Figures 7 and 8.

5.2  |  Effects of low-pass filtering on 
simulated ERPs

Panels c and d of Figure 6 show the results of applying a 
5 Hz low-pass filter to the real N170 and P3 waveforms, 

 3An ex-Gaussian function is a Gaussian function convolved with an 
exponential function to create a skewed waveform. This function is 
often used to model reaction time distributions (e.g., Karalunas 
et al., 2014; Schmiedek et al., 2007), which are typically right-
skewed. Long-latency ERP waves are also typically right-skewed, 
often as a result of the same factors that cause reaction time 
variability (Luck, 2014). Note that the ex-Gaussian distribution is 
only a coarse approximation of a reaction time distribution (Matzke 
& Wagenmakers, 2009; Sternberg & Backus, 2015), but it has the 
advantage of simplicity and is sufficient for assessing ERP waveform 
distortions. Other families of functions could also be used to 
simulate ERP waves, such as the gamma distribution (Kummer 
et al., 2020).

F I G U R E  6   Filter-induced distortions of real and simulated N170 and P3 components from the ERP CORE. (a) Grand average N170 
difference wave and simulation with a Gaussian function (mean = 129 ms, SD = 14 ms, peak amplitude = −4.6 μV). (b) Grand average P3 
difference wave and simulation with an ex-Gaussian function (mean = 310 ms, SD = 58 ms, λ = 2000 ms, peak amplitude =8.6 μV). The 
artificial waveforms were preceded and followed by 1000 ms of zero values to avoid edge artifacts. (c, d) Effects of a 5 Hz low-pass filter on 
the real N170 and P3 waveforms, respectively. (e, f) Effects of a 5 Hz low-pass filter on the simulated N170 and P3 waveforms, respectively. 
(g, h) Effects of a 2 Hz high-pass filter on the real N170 and P3 waveforms, respectively. (i, j) Effects of a 2 Hz high-pass filter on the 
simulated N170 and P3 waveforms, respectively. All filters used here were noncausal Butterworth filters with a slope of 12 dB/octave, and 
cutoff frequencies indicate the half-amplitude point.
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and Panels e and f show the results of filtering the simu-
lated versions of these waveforms. The filter reduced the 
amplitude of both the real and simulated N170 peaks. 
Figure 6e also shows that the filter “smeared out” the sim-
ulated N170, artificially creating an earlier onset time and 
a later offset time. By contrast, the 5 Hz low-pass filter had 
relatively little effect on the P3 wave (Figure 6d,f). Thus, as 
noted in Section 4.1, low-pass filters have a much larger ef-
fect on short-latency, narrow peaks such as the N170 than 
on long-latency, and broad peaks such as the P3.

Figure 7 shows the effects of a variety of different low-
pass filter cutoffs and roll-offs on the simulated N170 and 
P3 waveforms. When a relatively gentle roll-off of 12 dB/
octave was used, the waveform distortion consisted of a 
progressively greater temporal smearing as the cutoff fre-
quency declined, with minimal smearing when the cutoff 
was above 15 Hz. When steep roll-offs were used, how-
ever, the distortion of the simulated N170 also included 
opposite-polarity peaks on either side of the N170 (see, 
e.g., the cutoff of 10 Hz with a slope of 48 dB/octave). 
Thus, filtering N170 data with a steep slope might cause a 
researcher to reach the invalid conclusion that faces elicit 
a small, early, positive response as well as the typical 
N170 response. Filtering with a shallow slope avoids this 
problem. However, filters with shallow slopes still distort 

the onset and offset times of the waveform, especially 
with cutoff frequencies below 20 Hz. Whether these dis-
tortions are a significant problem depends on the nature 
of the scientific questions being asked and the analysis 
procedures being applied.

5.3  |  Effects of high-pass filtering on 
simulated ERPs

Panels g–j of Figure 6 show the results of applying a 2 Hz 
high-pass filter to real and simulated N170 and P3 wave-
forms. This filter did not produce any obvious distortion 
of the real N170 waveform, except for a modest reduc-
tion in peak amplitude, but the simulated waveform 
shows that the filter also produced opposite-polarity ar-
tificial peaks on each side of the simulated N170 wave. 
The other voltage deflections in the real data made it dif-
ficult to see these artifactual peaks. The filter produced 
much greater distortion of the P3 wave, dramatically re-
ducing P3 amplitude and producing an artifactual nega-
tive peak prior to the true peak. The artifactual negative 
peak might lead to the incorrect conclusion that the tar-
get stimuli elicited a larger negativity than the standard 
stimuli (for additional examples of invalid conclusions 

F I G U R E  7   Effects of different low-pass filter cutoffs (5, 10, 20, 30, 40, and 80 Hz) and roll-offs (12, 24, 36, and 48 dB/octave) on the 
simulated N170 and P3 waveforms. Note that the distortion is most notable for the lowest cutoff frequencies. All filters used here were 
noncausal Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.
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that may arise from filtering, see Tanner et  al.,  2015; 
Yeung et al., 2007).

Figure 8 shows the effects of a variety of different high-
pass filter cutoffs and roll-offs on the simulated N170 and 
P3 waveforms. The artifactual opposite-polarity peaks were 
minimal for cutoffs of 0.1 Hz or lower, but they became 
clearly visible at 0.5 Hz and increased progressively as the 
cutoff increased further. Note that the artifactual peaks 
were more pronounced prior to the P3 peak than after the 
P3 peak. This is a result of the right skew in the simulated 
P3 waveform. The same asymmetry can be observed in the 
filter artifacts for the real P3 waveform in Figure 6h. Thus, 
for right-skewed waveforms like the P3, high-pass filters pro-
duce a larger artifactual peak before than after the true peak.

5.4  |  Quantifying waveform distortion 
with the artifactual peak percentage (APP)

To quantify the waveform distortion produced by a given fil-
ter, we compute the artifactual peak percentage (APP). The 
APP reflects the amplitude of the artifactual peak produced 
by the filter relative to the amplitude at the peak of the true 
component after filtering. Absolute values are used so that a 

greater distortion always produces a larger value. Specifically, 
the APP is calculated from the filtered waveform as

Consider, for example, the artificial P3 wave after high-
pass filtering with a cutoff at 2 Hz and a slope of 12 dB/oc-
tave (Figure 8, upper right corner). The peak amplitude of 
the artifactual peak was −1.466 μV, and the peak amplitude 
of the true peak was +2.789 μV, so the artifactual peak per-
centage was 100 × | −1.466| ÷ |2.789| = 52.56%. This value 
is shown for each filter setting in Figure 8. Note that using 
peaks to quantify the size of a component can be problem-
atic with real data, but it is not so problematic with noise-free 
artificial waveforms, and it has the advantage of simplicity. 
However, it would be reasonable for researchers to use an al-
ternative measure, such as area amplitude, when computing 
the amplitude distortion percentage.

The idea behind this approach is that a small artifactual 
peak is likely to be obscured by the background noise and 
have no impact on the conclusions drawn from a given 
study, but a large artifactual peak might be statistically sig-
nificant and lead to a bogus conclusion. In addition, the 
artifactual peak might be considered to be substantial in 

(4)
APP=100× ∣amplitude of artifactual peak ∣

÷ ∣amplitude of true peak ∣.

F I G U R E  8   Effects of different high-pass filter cutoffs (0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and roll-offs (12, 24, 36, and 48 dB/octave) on the 
simulated N170 and P3 waveforms. Note that the distortion is most notable for the highest cutoff frequencies. All filters used here were 
noncausal Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point. The embedded number 
in each panel is the artificial peak percentage (shown in magenta for P3 and light blue for N170).
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size if it is relatively large compared to the other peaks in 
the waveform (such as the true peak after filtering). For 
example, the artifactual peak in the upper right corner 
of Figure 8 looks like a very substantial effect when com-
pared with the rest of the waveform.

Although artificial peaks are mainly a problem for 
high-pass filters, Figure 7 shows that they may also occur 
for low-pass filters with a steep cutoff (see, e.g., the lower 
left panel in Figure 7). We therefore provide the artifactual 
peak percentage values for the low-pass filters in Table S1.

5.5  |  Determining the maximal 
acceptable artifactual peak percentage 
(APP)

We define the optimal filter as the one that maximizes 
the data quality without producing unacceptable levels of 
waveform distortion. This requires setting a threshold for 
an unacceptably large APP.

Setting this threshold requires balancing the risk of a 
false positive (an artifactual peak that is large enough to be 
statistically significant) and the risk of a false negative (a true 
effect that is not statistically significant because of reduced 
SNR). This is analogous to the threshold for statistical signif-
icance in traditional frequentist statistical analyses (typically 
0.05); a lower threshold such as 0.01 reduces the risk of a 
false positive (a Type I error) but also decreases statistical 
power and increases the risk of a false negative (a Type II 
error). Generally, scientists are more concerned about false 
positives than false negatives and choose a relatively conser-
vative threshold. The chosen threshold is usually arbitrary, 
but at least the risks are well defined.

For most ERP studies conducted in low-noise envi-
ronments with highly cooperative participant popula-
tions, we propose a threshold of 5% for the artifactual 
peak percentage. That is, we recommend that research-
ers use the filter parameters that produce the best SNRSME 
while also producing an artifactual peak percentage of 
less than 5%. This amount of distortion would be like a 
0.5 μV artifactual N2 preceding a 10 μV P3, a 0.4 μV arti-
factual P2 preceding an 8 μV N400, or a 0.1 μV artifactual 
P1 preceding a 2 μV N2pc. Artifactual effects of this size 
are unlikely to be statistically significant under typical 
conditions. If we increased the criterion to 10%, however, 
we might have a 1 μV artifactual N2, a 0.8 μV artifactual 
P2, or a 0.2 μV artifactual P1, which would have a good 
chance of being statistically significant4 and leading to a 

fundamentally incorrect conclusion. If we decreased the 
criterion to 1%, there would be almost no chance that the 
artifactual peaks would be significant, but we would also 
be choosing a filter that yields a poorer SNR and there-
fore lower statistical power. Thus, a maximal artifactual 
peak amplitude of 5% seems like a reasonable balance 
between false positives and false negatives.

However, we would like to stress that this 5% crite-
rion is arbitrary, and it would not be straightforward 
to assess the actual probability that an artifactual ef-
fect of a given size would be statistically significant. 
Nonetheless, the 5% criterion seems reasonably conser-
vative without being overly strict for most ERP studies 
conducted in low-noise environments with highly co-
operative participant populations. Under other condi-
tions, it is likely that a more liberal criterion would be 
justified. For example, in studies with noisy EEG signals 
or an unusually small number of trials, an artifactual 
peak of 10% amplitude is much less likely to lead to a 
statistically significant effect, and the boost in SNR and 
statistical power produced by a high-pass cutoff that 
produces an artifactual peak percentage of 10% may 
therefore be well justified.

When the amplitude of an ERP component is being 
scored, the temporal smearing of the waveform produced 
by a low-pass filter is not usually a concern (unless it im-
pacts the SNR). Thus, we do not recommend using the 
amount of latency distortion as a criterion for filter sec-
tion when mean or peak amplitudes are being scored. 
However, this smearing could be an issue when the exact 
onset or offset latency of an effect is of theoretical rele-
vance or when mass univariate statistical analyses are 
used. In those situations, the specific theoretical questions 
should drive the decision about how much latency distor-
tion is acceptable. Section S7 of the supplementary mate-
rials describes a latency distortion percentage metric that 
could be used for this purpose.

6   |   EXAMPLE: DETERMINING 
THE OPTIMAL FILTER 
PARAMETERS FOR P3 MEAN 
AMPLITUDE

This section provides a concrete example of our approach, 
using data from the ERP CORE P3 paradigm (Kappenman 
et al., 2021) to select an optimal filter for P3 mean ampli-
tude. This was an oddball paradigm with rare targets and 
frequent standards. The P3 was isolated using a target-
minus-standard difference wave. We used candidate fil-
ters created by factorially combining high-pass cutoffs of 
0, 0.01, 0.05, 0.1, 0.5, 1, and 2 Hz with low-pass cutoffs of 5, 
10, 20, 30, 40, 80, and 115 Hz (12 dB/octave).

 4More trials are typically used in experiments that examine smaller 
components, so an artifactual effect of 0.2 μV might be statistically 
significant in a typical N2pc experiment but would be unlikely to be 
significant in a typical P3 experiment.
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      |  15 of 23ZHANG et al.

We will first describe the procedure for assessing the 
effects of data quality, which involves looping through 
each candidate filter (Figure  2, left). For each filter, we 
loop through each of the participants to obtain the single-
participant averaged ERP waveforms and SME values for 
the targets and standards. This starts by applying the ordi-
nary preprocessing steps that are needed for a given study. 
In the present case, these steps included shifting event 
codes to account for the monitor delay, downsampling 
the data to 256 Hz, re-referencing, and correcting for ar-
tifacts using independent component analysis (ICA). The 
candidate filter was then applied to the continuous data 
(to avoid edge artifacts). We then conducted additional 
preprocessing steps, which included epoching the data, 
performing baseline correction, and rejecting artifacts 
that were not corrected by ICA. A detailed description of 
these steps can be found in the companion paper (Zhang 
et al., 2024).

6.1  |  Quantifying the signal for each 
candidate filter

Averaged ERP waveforms for targets and for standard 
were obtained from the resulting data, along with the 
target-minus-standard difference wave. A grand average 
across participants was then computed for the difference 
wave. The score of interest for the P3 wave in the ERP 
CORE was the mean voltage from 300 to 600 ms at the Pz 
electrode site. This score was obtained from the grand av-
erage difference wave to serve as the estimate of the signal 

after the attenuation produced by the current candidate 
filter.

Figure  9a shows the resulting scores for each candi-
date (see Figure S1 for the grand average waveforms from 
which the scores were obtained and Figure S2 for the cor-
responding scalp maps). Significant attenuation of the P3 
was produced by high-pass cutoffs above 0.1 Hz, whereas 
low-pass filtering had very little effect on the signal.

6.2  |  Quantifying the noise for each 
candidate filter

Because the score of interest was a mean amplitude value, 
ERPLAB was used to directly compute the SME for each 
condition using Equation  (1). Bootstrapping would be 
needed to compute the SME for nonlinear measures, such 
as peak amplitude and peak latency.

We then applied Equation (2) to combine the SME val-
ues for the targets and the standards into a single SME 
value that reflects the data quality for the difference in am-
plitude between the targets and the standards. The SME 
values from the different participants were then aggre-
gated using Equation (3) to obtain the RMS(SME), which 
reflects the data quality for the P3 amplitude score across 
the whole sample of participants.

Figure  9b shows the resulting RMS(SME) values for 
each of the candidate filters. The noise level decreased 
progressively as the high-pass cutoff increased. Thus, 
high-pass filtering decreased the signal (Figure  9a) and 
also decreased the noise (Figure 9b).

F I G U R E  9   Demonstration of how the signal, noise, and signal-to-noise ratio (SNR) vary as a function of the filter settings for the 
P3 mean amplitude score from the ERP CORE visual oddball paradigm. (a) Signal: P3 mean amplitude score (from 300 to 600 ms at Pz) 
obtained from the grand average target-minus-standard difference wave. (b) Noise: Root mean square (RMS) of the single-participant 
standardized measurement error (SME) values for the P3 scores. Analytic SME values were obtained for each participant for the target 
and standard conditions for mean amplitude, and Equation (1) was applied to obtain the SME of the target-minus-standard difference for 
each participant. These SME values were then aggregated across participants using the RMS. (c) SNR: The signal divided by the noise for 
each filter setting. Note that filtering was applied to the continuous EEG prior to averaging with every combination of seven high-pass 
filter cutoffs (0, 0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and seven high-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). All filters used here were 
noncausal Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.
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6.3  |  Quantifying the signal-to-noise 
ratio for each candidate filter

To assess whether the reduction in signal was outweighed 
by the reduction in noise for a given filter, we computed 
the SNRSME for each candidate filter by taking the signal 
(the score from Figure 9a) and dividing it by the noise (the 
RMS(SME) from Figure 9b). The SNRSME for each candi-
date filter is shown in Figure 9c.

The high-pass cutoff had a clear impact on the 
SNRSME, with the largest SNRSME obtained at 0.5 Hz. 
Low-pass filtering had very little effect except when a 
2 Hz high-pass filter was also applied. This is because 
mean amplitude scores are largely insensitive to high-
frequency noise (see Figure 4). The best overall SNRSME 
was obtained with a high-pass cutoff of 0.5 Hz and a 
low-pass cutoff of 5 Hz.

Figure  S2 shows how filtering impacts the scalp dis-
tribution of an ERP component and discusses how the 
SNRSME might vary across scalp sites. Figure  S3b shows 
SNRSME values for a denser sampling of high-pass cutoff 
frequencies between 0.1 and 1.0 Hz.

6.4  |  Assessing waveform distortion for 
each candidate filter

As shown in Figure 9c, the best SNRSME for the P3 mean 
amplitude score was obtained with a high-pass cutoff of 
0.5 Hz and no low-pass filtering. However, it is necessary 
to combine the information about SNRSME with informa-
tion about waveform distortion in order to select the opti-
mal filter settings.

Our procedure for quantifying waveform distortion 
(Figure  2, right) begins by looping through the partic-
ipants with the same processing steps used for the SME 
calculations, but with minimal filtering. In the present 
case, this led to an averaged ERP waveform for targets and 
for standards in each participant, which were used to cre-
ate target-minus-standard difference waves. These were 
then combined across participants into a grand average 
difference wave. We then simulated a P3 difference wave 
to match the observed grand average difference wave (as 
shown in Figure 6b).

The next step was to loop through the candidate filters 
and quantify the amount of waveform distortion each fil-
ter produced in the simulated P3 waveform. Distortion 
was quantified with the artifactual peak percentage (APP). 
The top row of Figure 8 shows the filtered waveform and 
APP for each of the candidate high-pass cutoffs with no 
low-pass filtering, and Figure S3a shows the APP values 
for all the candidate filters.

As shown at the bottom of Figure 2, the final step of 
our procedure is to combine the data quality information 
with the waveform distortion information and select the 
filter with the best SNRSME from among those with an APP 
of less than 5%. If we did not consider the APP, we would 
have chosen a high-pass cutoff at 0.5 Hz and a low-pass 
cutoff of 5 Hz, which produced the best SNRSME. However, 
Figure  S3a shows this filter produced an APP of 12.2%, 
which was well above the 5% threshold. Lowering the 
high-pass cutoff to 0.1 Hz and keeping the low-pass cut-
off at 5 Hz reduced the APP to 0.5%, well under the 5% 
threshold.

These results suggest that a bandpass of 0.1–5 Hz is 
optimal. However, after we determined that the best 
combination of data quality and waveform distortion 
lies somewhere between high-pass cutoffs of 0.1 and 
0.5 Hz, we repeated the process with a denser sampling 
of cutoffs between 0.1 and 0.5 Hz (in steps of 0.1 Hz) to 
more precisely determine the optimal filter settings (see 
Figure S3). Among the filters with an APP of <5%, the 
best SNRSME was produced with a high-pass cutoff of 
0.2 Hz; there were no differences among the different 
low-pass cutoffs with this high-pass cutoff. Thus, when 
P3 mean amplitude is scored in studies like the ERP 
CORE visual oddball experiment, a high-pass cutoff of 
0.2 Hz is optimal, along with whatever low-pass cutoff 
is useful given the other goals of the study. For exam-
ple, a low-pass cutoff at 20 or 30 Hz can be applied to 
remove “fuzz” in plots of the waveforms that might oth-
erwise make it difficult to visualize differences between 
conditions.

The companion paper provides recommendations for 
six other ERP components and includes peak amplitude, 
peak latency, and 50% area latency scores in addition to 
mean amplitude scores. One could also assess the impact 
of different roll-off slopes, but a slope of 12 dB/octave is 
usually best in terms of minimizing waveform distortion 
(see Figures 7 and 8).

7   |   SELECTING OPTIMAL FILTER 
SETTINGS FOR LATENCY SCORES

The kinds of filters typically used in ERP research will 
typically decrease the amplitude of an ERP component 
(see Section  8 for exceptions). As a result, filters tend 
to reduce the difference in amplitude between groups 
or conditions. This is illustrated in Figure 10a,b, which 
show a simulation of two conditions in which the P3 am-
plitude differs. In the unfiltered data (Figure 10a), the 
peak amplitude differed by 0.5 μV between the two con-
ditions. When a high-pass filter with a half-amplitude 
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cutoff of 1 Hz was applied (Figure 10b), the difference in 
amplitude between conditions was reduced to 0.24 μV. 
This is why our approach to determining optimal filter-
ing parameters for amplitude scores involves quantify-
ing the effects of filtering on the signal as well as the 
noise.

Filters do not typically have large effects on latency 
scores, and any observed effects may consist of an in-
crease or a decrease depending on the shape of the 
waveform. Moreover, if a shift in latency does occur, 
the latency scores will typically be shifted equivalently 
across conditions. This is illustrated in Figure  10c,d, 
which show a simulation of two conditions in which the 
P3 latency differs. In the unfiltered data (Figure 10c), the 
peak latency differed by 100 ms between the two con-
ditions. When a high-pass filter with a half-amplitude 
cutoff of 1 Hz was applied (Figure 10d), the peak latency 
was shifted leftward by 6.4 ms in both conditions, and 
the difference in peak latency between the two condi-
tions remained at 100 ms. Because filtering does not 
consistently reduce the difference in latency between 
groups or conditions, it is not typically necessary to con-
sider the effects of filtering on the signal relative to the 
noise (the SNR) when selecting an optimal filter for la-
tency scores. Indeed, the SNR might even be misleading, 

because a filter might lead to smaller (earlier) latency 
scores even if it does not decrease the ability to detect 
differences between groups or conditions.

Instead, one can simply determine which filters yield 
the lowest noise (the smallest SME value), along with a 
consideration of waveform distortion. Thus, the flow-
chart shown in Figure  2 would be altered slightly for 
latency scores, using RMS(SME) rather than SNRSME to 
assess data quality and choosing the filter that produces 
the lowest RMS(SME) while also producing an APP of 
less than 5%.

7.1  |  Example: Selecting optimal filter 
parameters for P3 peak latency

In this subsection, we will illustrate our process of select-
ing filter parameters for latency scores using the same 
dataset used for the P3 mean amplitude example. We will 
focus on P3 latency, scored as the peak latency between 
300 and 600 ms in the target-minus-standard difference 
wave at the Pz electrode site. We examined the same set of 
candidate filters as in our analyses of P3 mean amplitude.

In the data quality quantification portion of our proce-
dure (Figure 2, left), we again looped through the candidate 

F I G U R E  1 0   Demonstration of how filters reduce amplitude differences but not latency differences. (a) Simulated P3 wave in two 
conditions, with a difference in peak amplitude of 0.5 μV between the conditions. (b) Same waveforms as in (a) after the application of a 
high-pass filter with a 1 Hz half-amplitude cutoff and a slope of 12 dB/octave. The filtering caused a reduction in the amplitude difference to 
0.24 μV. (c) Simulated P3 wave in two conditions, with a difference in peak latency of 100 ms between the conditions. (d) Same waveforms 
as in (c) after the application of a high-pass filter with a 1 Hz half-amplitude cutoff and a slope of 12 dB/octave. The difference in latency 
between the two conditions is still 100 ms. The waveforms were created using ex-Gaussian functions with a standard deviation of 58, a tau of 
2000 ms, an amplitude of 0.5 or 1 μV, and a Gaussian mean of 320 ms or 220 ms.
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filters, computing a target-minus-standard difference wave 
for each participant for a given filter. We used bootstrap-
ping to obtain the SME for P3 peak latency for that filter 
(see Section S6 of the supplementary materials for details). 
We then computed the RMS of the single-participant SME 
values as our overall estimate of the noise level for that filter. 
The resulting RMS(SME) values are shown in Figure 11 (see 
Figure S1 for the grand average waveforms).

The high-pass cutoff frequency had relatively little im-
pact on the RMS(SME) until the cutoff reached extreme 
values (1 Hz or greater). By contrast, the low-pass cutoff 
frequency had a large impact, with progressively smaller 
(better) RMS(SME) values as the cutoff frequency de-
creased. This is the opposite of the pattern that was ob-
served for mean amplitude scores, where the high-pass 
cutoff had a large effect on the RMS(SME) and the low-
pass cutoff had little or no effect (see Figure 9b). These op-
posite patterns reflect the fact that mean amplitude scores 
are strongly impacted by low-frequency noise but not by 
high-frequency noise, whereas peak latency scores are 
strongly impacted by high-frequency noise but not by low-
frequency noise. This further reinforces the general point 
that the optimal filter settings depend on how the data will 
ultimately be scored.

The next step was to assess waveform distortion using 
the artifactual peak percentage (APP). This is done in ex-
actly the same way for latency measures as for amplitude 
measures, so we used the APP values that we obtained for 
our analyses of P3 mean amplitude in Section 6. We then 
combined this information with the RMS(SME) informa-
tion to select the optimal filter.

The best RMS(SME) value was produced by the com-
bination of a 0.5 Hz high-pass filter and a 5 Hz low-pass 

filter, but all the filter combinations including a 0.5 Hz 
high-pass filter exceeded the 5% APP threshold. Of the 
filters with an APP less than 5%, the best RMS(SME) was 
produced by the combination of a 0.1 Hz high-pass filter 
and a 5 Hz low-pass filter.

We also examined a denser sampling of high-pass cut-
offs (see Figure S3 for the RMS(SME) and APP values). 
Of the filters with an APP of less than 5%, the lowest 
RMS(SME) value was obtained for the combination of 
a 0.2 Hz high-pass filter and a 5 Hz low-pass filter. This 
is therefore the optimal filter when P3 peak latency is 
scored from studies like the ERP CORE visual oddball ex-
periment. Note that this is a much lower low-pass cutoff 
frequency than the 30 Hz cutoff that we previously recom-
mended for general use in cognitive and affective research 
(Luck, 2014). This shows the value of using a formal pro-
cedure to determine the optimal filtering parameters.

A 5 Hz low-pass filter produced a modest but clearly 
noticeable leftward shift in the onset latency of the sim-
ulated P3 (see the upper left panel in Figure 7). If this 
latency distortion might impact the scientific conclu-
sions of a given study, a higher cutoff frequency could 
be chosen for the low-pass filter. For example, increas-
ing the low-pass cutoff from 5 Hz to 10 Hz reduces the 
leftward shift in the onset latency while only increasing 
the RMS(SME) by less than 5% (from 50.1 to 52.4; see 
Figure S3c).

8   |   MORE COMPLEX SCENARIOS

Our approach to filter selection was based on a simple 
scenario, in which the researcher wishes to determine the 

F I G U R E  1 1   Noise defined by root mean square of the standardized measurement error values for P3 peak latency from the ERP CORE 
across a wide range of filter combinations. The continuous EEG was filtered prior to averaging with every combination of seven high-pass 
filter cutoffs (0, 0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and seven high-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). All filters used here were 
noncausal Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.

None .01 .05 .1 .5 1 2
High-pass filter (Hz)

45

60

75
P3 Peak Latency: Noise

5

10

20

30

40

80

115

Low-pass filter cutoffs (Hz)
B

et
te

r

ms

 14698986, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/psyp.14531 by U

niversity O
f C

alifornia - D
avis, W

iley O
nline L

ibrary on [01/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  19 of 23ZHANG et al.

optimal filter for a single score (e.g., P3 peak latency) and 
the component of interest can be well isolated by means of 
a difference wave (e.g., target-minus-standard). This sec-
tion considers more complex scenarios.

8.1  |  Analyzing multiple scores in a 
given study

One likely scenario is that a researcher is interested in 
more than one score in a given study (e.g., both peak am-
plitude and peak latency for the P3 component, or mean 
amplitude for both the N170 and P3 components). If dif-
ferent filters are optimal for the different scores, what 
filter settings should be used? This will depend on the sci-
entific goals of the experiment. In most cases, the most 
conservative approach would be to use the same filter 
settings for all the scores in a given study. In this case, 
it would be typically appropriate to choose a filter that 
strikes a reasonable compromise between the data quality 
for the different scores while ensuring that the filter does 
not exceed the threshold for waveform distortion for any 
of the components.

However, there may be good reasons to use different 
filters for different components in a single study when the 
components have very different frequency properties. For 
example, Woldorff et  al.  (1987) examined the effects of 
selective attention on the very rapid auditory brainstem 
responses (ABRs, <10 ms), the auditory midlatency re-
sponses (MLRs, 20–50 ms), and the auditory long-latency 
responses (LLRs, >80 ms). These components have very 
different frequency properties, so the researchers one 
bandpass for the ABRs (30–2000 Hz) and a very differ-
ent bandpass for the MLRs and LLRs (0.01–100 Hz). The 
goal of that study was to determine whether attention 
impacted each of these responses, and using the best fil-
ter settings for each component was a reasonable way of 
maximizing the ability to detect attention effects for the 
different components.

In addition, different filter settings are often optimal 
for different scoring methods. For example, the com-
panion paper (Zhang et al., 2024) found little or no im-
pact of the low-pass filter cutoff on data quality for P3 
mean amplitude scores but found that a 5 Hz low-pass 
cutoff improved the data quality for P3 peak amplitude. 
Onset latencies are particularly prone to distortion from 
noise. Thus, researchers sometimes use lower low-pass 
cutoffs for latency measures than for mean amplitude 
in the same study. For example, Kang et al. (2019) used 
a low-pass cutoff at 30 Hz for their amplitude analyses 
but used a cutoff at 8 Hz for their analyses of the onset 
latency of the lateralized readiness potential. In general, 
researchers must think carefully about the consequences 

of using identical or different filters for different scores 
in the same dataset, and they should explicitly justify 
their choices.

8.2  |  Temporally adjacent components

ERP waveforms typically contain a progression from rela-
tively small and narrow components (e.g., P1) to relatively 
large and broad components (e.g., P3). When multiple 
components are impacted by a given experimental ma-
nipulation, the difference wave may contain a smaller, 
narrower component followed by a larger, broader com-
ponent. For example, a target-minus-standard difference 
wave in an oddball experiment often contains a relatively 
small and narrow N2 followed by a large and broad P3. 
When this happens, a filter that is appropriate for one of 
the components may produce significant waveform dis-
tortion for the other component, and artifactual effects 
may occur if the wrong filter is applied.

This is illustrated in Figure 12, which illustrates the ef-
fects of filtering a simulated waveform that contains both an 
MMN component and a P3 component (based on the wave-
form parameters for the simulated MMN and P3 waveforms 
in the companion paper). Figure 12a shows the waveform 
for the simulated MMN, along with the waveform after ap-
plication of a 0.5 Hz high-pass filter (which was the optimal 
cutoff for the MMN and produced minimal waveform dis-
tortion). Figure 12b shows the simulated P3, both unfiltered 
and filtered at 0.5 Hz. Although this filter was optimal for 
the MMN, it produced a substantial distortion of the P3, in-
cluding a negative-going deflection during the time period 
of the MMN. When both the MMN and P3 were summed 
together into a single waveform (Figure  12c), the filtered 
waveform appeared to contain a larger MMN because of the 
negative-going filter artifact for the P3. Figure 12d,e shows 
how this can lead to an incorrect interpretation. Figure 12d 
shows the unfiltered waveforms for two conditions, one 
in which the P3 is 50% larger than in the other. Figure 12e 
shows the result of filtering these waveforms. The artifac-
tual negativity produced by the filter during the MMN time 
period is now larger for the condition with the larger P3 
wave, making it appear as if both the MMN and the P3 were 
larger in this condition (see Acunzo et  al.,  2012; Tanner 
et al., 2015, for similar artifactual effects).

This problem can be minimized by choosing a filter 
that produces minimal waveform distortion (e.g., APP 
< 5%) for each of the individual components. To be even 
more careful (or when the waveshapes of the underlying 
components are not known), researchers could create an 
artificial waveform that reflects the complex shape of the 
observed waveform and examine how this waveform is 
distorted by the filter (as in Figure 12c).
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8.3  |  Temporally 
overlapping components

An even more challenging problem arises when multiple 
components are strongly active in the same time period. 
In a typical ERP waveform, the voltage at a given electrode 
site at a given latency reflects a weighted sum of multiple 

different underlying components (Coles & Rugg,  1995; 
Donchin & Heffley, 1978; Luck, 2014). For example, the 
voltage produced by a target stimulus at the Pz electrode 
site at 400 ms may reflect the combined impact of a dozen 
different ERP components, not just the P3 component. 
A given filter may change the data quality differently for 
these different components, and a filter may also produce 
different waveform distortion patterns for the different 
components as a result of their different waveshapes. This 
makes it difficult to find a filter that is optimal for all the 
components that are active in the ERP waveform.

In the present work, we have used a common solution 
to this problem, namely using difference waves to subtract 
away most of the components, ideally leaving only a single 
component in the waveform. Difference waves work reason-
ably well in many cases, but they often fail to isolate a single 
component. For example, a target-minus-nontarget differ-
ence wave often includes an N2 component as well as a P3 
component (Folstein & Van Petten, 2008), and the P3 portion 
may include multiple different components (Polich, 2012). 
In addition, difference waves may not be appropriate for as-
sessing some kinds of effects, such as the error-related nega-
tivity that is present in non-error trials (Gehring et al., 2012). 
Researchers may choose to use other approaches to isolating 
components in these situations, such as source reconstruc-
tion (Michel & Brunet,  2019) or spatiotemporal princi-
pal component analysis (Spencer et al., 2001). It would be 
straightforward to insert these methods into our procedure 
for determining the optimal filter settings.

9   |   LIMITATIONS AND FUTURE 
DIRECTIONS

The present approach to filter selection has several 
strengths, including the use of objective and quantifi-
able properties of filters with respect to specific ERP ef-
fects and the scoring methods used to quantify them. 
However, subjective decisions are involved in selecting 
the shape of the artificial waveforms that are used to as-
sess waveform distortion. In addition, the 5% artifactual 
peak percentage criterion, although reasonable, is some-
what arbitrary. Nonetheless, the present approach makes 
it possible to quantitatively assess both the benefits and 
costs of filtering.

Another important limitation of the present approach 
is that it is designed only for studies in which the scores 
are obtained from averaged ERP waveforms (because the 
SME is a measure of data quality for such scores). It is 
not designed for single-trial analyses, which can be quite 
valuable and are becoming increasingly common (Bürki 
et al., 2018; Heise et al., 2022; Volpert-Esmond et al., 2018; 

F I G U R E  1 2   Effects of filtering a simulated waveform 
that contains both a mismatch negativity (MMN) and a P3. (a) 
Waveform for the simulated MMN, along with the waveform after 
application of a 0.5 Hz high-pass filter (12 dB/octave). (b) Waveform 
for the simulated P3, along with the waveform after application 
of a 0.5 Hz high-pass filter (12 dB/octave). (c) Summation of the 
MMN and P3 waveforms into a single waveform. (d) Unfiltered 
waveforms for two conditions, one in which the P3 is 50% larger 
than in the other. (e) Filtered waveforms for the two conditions 
(0.5 Hz high-pass filter, 12 dB/octave).
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Winsler et al., 2018). However, there is good reason to be-
lieve that the present approach will work well for single-
trial analyses in which mean amplitude is scored from 
single-trial EEG epochs and these single-trial scores are 
then entered into the statistical analyses. This scoring 
method is a linear operation, as is averaging across tri-
als, and the filters typically used in ERP research also 
involve a linear or approximately linear operation. The 
order of operations does not matter for linear operations 
(Luck, 2014), so the effects of filtering should be the same 
whether the mean amplitude is measured before or after 
averaging. Thus, we conjecture that our filter selection 
approach will also be well suited for single-trial analyses 
using mean amplitude scores. However, additional re-
search would be required to verify this conjecture.

The present approach is also not designed for mass uni-
variate analyses, in which statistical comparisons between 
groups or conditions are made at a large number of in-
dividual time points and/or electrode sites, accompanied 
by an appropriate correction for multiple comparisons 
(Frossard & Renaud,  2022; Groppe et  al.,  2011; Maris & 
Oostenveld,  2007). As discussed in Section  4.2, the SNR 
for an individual time point can be estimated by simply 
dividing the voltage at that time point by the standard 
error of the mean at that time point. Rather than using 
SNRSME, this traditional SNR value could be used in select-
ing filter parameters. However, it is not obvious how one 
would combine standard errors across time points and/or 
electrode sites or how these standard error values would 
interact with the procedure for correcting for multiple 
comparisons. This is another avenue for future research.
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