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1   |   INTRODUCTION

Almost all ERP studies involve filtering, and optimal filter 
settings are important to maximize statistical power and 
avoid waveform distortions that might lead to erroneous 
conclusions (Acunzo et al., 2012; Rousselet, 2012; Tanner 
et al., 2015, 2016; Van Driel et al., 2021; VanRullen, 2011; 
Widmann et al., 2015; Yeung et al., 2007). However, there 
is no widespread consensus about what filter settings are 
optimal, and the optimal settings are likely to vary across 

scoring methods, experimental paradigms, subject popu-
lations, and recording setups.

Filter settings vary widely across published studies, 
even studies within the same research domain. For ex-
ample, in a review of emotional face processing studies, 
Schindler and Bublatzky (2020) found that studies used 
high-pass cutoff frequencies ranging from 0.01 to 1.0 Hz 
and low-pass cutoff frequencies ranging from 16 to 
200 Hz. Formal recommendations for filter settings also 
vary widely. For example, a set of recommendations for 
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clinical ERP studies (Duncan et al., 2009) recommended 
a bandpass of 1 to 30 Hz for the mismatch negativity and 
0.1 to 100 Hz for the P3 and N400 components, Widmann 
et al. (2015) recommended a bandpass of ≤0.1 to ≥40 Hz for 
most studies, and Luck (2014) recommended a bandpass 
of 0.1 to 30 Hz for most cognitive and affective studies. 
Given this variability in recommendations, what cutoffs 
should a researcher use? Different filter cutoffs lead to dif-
ferent levels of statistical power and waveform distortion, 
so the field would be well served by a set of careful, math-
ematically rigorous, and empirically justified recommen-
dations for filter settings that take into account the details 
of a given study (e.g., the component being studied and 
the scoring method).

In a companion paper (Zhang et al., 2024), we presented 
a new approach for determining the optimal filter settings 
for a given situation. This approach involves filtering a 
data set with many different filters and then assessing the 
resulting noise level and the signal-to-noise ratio (SNR) 
for each filter. Each filter is also applied to noise-free sim-
ulated ERP waveforms to quantify the amount of wavesh-
ape distortion produced by the filter. The optimal filter is 
chosen as the one that produces the best data quality with-
out exceeding a preset criterion for waveshape distortion. 
The present article applied this approach to an open EEG/
ERP data set—the ERP CORE (Kappenman et al., 2021)—
to determine optimal filter settings for a broad set of ERP 
components obtained from a relatively large set of neuro-
typical young adults. These settings should also be nearly 
optimal for similar paradigms, participant populations, 
and recording conditions. In addition, we repeated the 
analyses after adding more noise to the data to determine 
optimal filters for modestly noisier data sets. The recom-
mended filter cutoffs are shown in Table 1.

1.1  |  Overview of the approach

The companion paper (Zhang et al., 2024) provides a de-
tailed description and justification of our approach. This 
section provides a brief overview.

Our approach is based on the observation that the ef-
fects of a particular type of noise depend on the details 
of the study, including the shape of the component being 
scored (e.g., a narrow N170 or a broad P3), the scoring 
method (e.g., mean amplitude vs. peak latency), and the 
types of noise present in the data (e.g., muscle noise vs. 
skin potentials). When the SNR is computed with our ap-
proach, the specific amplitude or latency score for a spe-
cific component defines the signal, and the expected error 
in this score defines the noise. The signal can be quanti-
fied by obtaining the score of interest from a grand average 
waveform. The noise that is relevant for that specific score 
can be assessed using a new metric of ERP data quality 
called the standardized measurement error (SME; Luck 
et  al.,  2021; Zhang & Luck,  2023). The SME is obtained 
from individual participants and then aggregated across 
participants by computing the root mean square (RMS) of 
the single-participant SME values. The SNR is then calcu-
lated as the score divided by the RMS(SME) of that score. 
We use the term SNRSME to indicate this specific definition 
of the SNR.

Filters typically reduce the amplitude of an ERP com-
ponent (the signal) as well as the noise, so it is essential 
to use the SNRSME when determining the optimal filter 
settings for amplitude scores. However, most filters have 
only a modest effect on latency values (see Zhang et al., 
2024), so we do not assess the ratio of signal to noise for 
each filter but instead assess the noise level directly using 
the RMS(SME).

T A B L E  1   Recommended filter settings (in Hz, with a slope of 12 dB/octave) for each combination of scoring method and ERP 
component.

Mean amplitude Peak amplitude Peak latency 50% Area latency

High 
pass Low pass

High 
pass Low pass High pass Low pass High pass Low pass

N170 0.9 ≥30 or none 0.9 ≥30 or none (or 30a) ≤0.9 10-20 ≤0.9 10–20

MMN 0.5 ≥20 or none 0.5 ≥20 or none (or 30a) ≤0.5 10 (or 5b) ≤0.5 ≥20 or none

N2pc 0.5 ≥20 or none 0.5 20–40 (or 20a) 0.01 or none 10 0.01 or none 5 (or 10c)

P3 0.2 ≥10 or none 0.2 ≥10 (or 10a) 0.2 10 (or 5a) 0.2 10 (or 5a)

N400 0.2 ≥10 or none 0.2 ≥10 (or 10a) 0.2 10 (or 5a) 0.2 10 (or 5a)

LRP 0.3 ≥30 or none 0.3 30 (or 20a) 0.3 5 (or 10c) 0.3 5 (or 10c)

ERN 0.4 ≥20 or none 0.4 ≥20 or none 0.4 10 0.4 10
aFor data with moderate amounts of high-frequency noise.
bFor data with moderate amounts of broadband noise (if distortion of onset and offset times can be tolerated).
cTo avoid distortion of onset and offset times.
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Low-pass filters typically spread the components in 
time, whereas high-pass filters often produce artifactual 
opposite-polarity peaks before and after a true peak (De 
Cheveigné & Nelken,  2019; Widmann et  al.,  2015). Our 
approach to filter selection involves applying filters to 
noise-free simulated ERP waves and quantifying the size 
of the artifactual peaks. Simulated data must be used for 
this purpose because ground truth is not known for real 
data. The size of the artifactual peaks produced by a given 
filter is quantified as the amplitude of the artifactual peak 
relative to the amplitude of the true peak (the artifactual 
peak percentage).

The amount of waveform distortion that can be toler-
ated depends on the scientific goals of a given study. In 
most cases, artifactual opposite-polarity peaks are the 
most significant kind of distortion because they can cause 
a modulation of one component to be misinterpreted 
as a modulation of some other component. We propose 
that the selected filter should produce an artifactual peak 
that is less than 5% of the size of the true peak, at least 
for studies conducted in highly cooperative participant 
populations using high-quality recording systems (Zhang 
et al., 2024). Thus, the optimal filter in such studies is de-
fined as the one that yields the best SME or SNRSME while 
producing an artifactual peak percentage of <5%.

The fact that different filter parameters may be optimal 
for different ERP components or different scoring meth-
ods creates complications when multiple components or 
scores are analyzed in the same data set. Recommendations 
for these scenarios are provided in the companion paper 
(Zhang et al., 2024).

1.2  |  Goals of the present study

Although our approach is straightforward, and we have 
provided tools to make it easy to implement in ERPLAB 
Toolbox (Lopez-Calderon & Luck, 2014), applying this ap-
proach to a broad set of data requires an investment of 
time. Moreover, to avoid double dipping, the optimal fil-
ter settings should be determined using a previous data 
set rather than the data set currently being analyzed. The 
present study therefore applied this approach to an exist-
ing public data set that contains a broad set of ERP com-
ponents, providing researchers with recommended filter 
settings that they can use in future research with these 
components.

Specifically, we used the data from the ERP CORE 
(Compendium of Open Resources and Experiments; 
Kappenman et  al.,  2021), which includes data from 40 
young adults who performed six standardized paradigms 
that yielded seven commonly studied ERP components: 
P3b, N400, N170, N2pc, mismatch negativity (MMN), 

error-related negativity (ERN), and lateralized readiness 
potential (LRP). We provide recommended filter settings 
for each of these components, separately for four differ-
ent scoring methods: mean amplitude, peak amplitude, 
peak latency, and 50% area latency (Clayson et al., 2013; 
Luck,  2014). The recommended filter settings should be 
useful for a broad range of researchers who record ERPs 
from similar subject populations using similar record-
ing setups. Note that peak amplitude is often a prob-
lematic scoring method (Clayson et  al.,  2013; Zhang & 
Luck, 2023), but we include it here because it is still widely 
used in some domains.

The ERP CORE data contain relatively low noise lev-
els because the participants were highly compliant young 
adults and the EEG was recorded using a high-quality 
recording system with active electrodes, a gel conductor, 
and a climate-controlled shielded chamber. To demon-
strate that our recommendations generalize to data that 
have modestly greater noise levels, we provide additional 
analyses in which different types of noise are added to the 
data. However, we do not expect the results to generalize 
to highly different subject populations (e.g., infants), very 
dissimilar recording setups (e.g., dry electrodes), or com-
ponents with very different waveshapes (e.g., the auditory 
brainstem response or contralateral delay activity).

2   |   METHOD

All data processing was conducted in Matlab using 
EEGLAB Toolbox (Delorme & Makeig, 2004) and ERPLAB 
Toolbox (Lopez-Calderon & Luck,  2014). The data and 
scripts used in our analyses are available at https://​osf.​io/​
z3hfp/​​. If desired, the processing steps can be carried out 
using the graphical user interface rather than using scripts 
(using version 9.20 or higher of ERPLAB Toolbox).

2.1  |  ERP CORE data and preprocessing

The ERP CORE (Kappenman et al., 2021) data were down-
loaded from the online repository (https://​doi.​org/​10.​
18115/​​D5JW4R). Details of the participants, paradigms, 
recording methods, and analysis procedures can be found 
in the original paper. Here, we provide a brief overview 
of the participants, recording methods, and preprocess-
ing procedures. A brief description of each individual ERP 
paradigm is provided in the corresponding portion of the 
Results section.

The ERP CORE contains data from 40 neurotypical 
college students (25 females) who were recruited from the 
University of California, Davis community. We used all 
40 participants in the present analysis, irrespective of the 
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number of artifacts or behavioral errors. The one excep-
tion is that one participant had zero usable trials for one 
condition of the N2pc experiment and was excluded from 
the analyses of that experiment.

The EEG was recorded using a DC-coupled Biosemi 
ActiveTwo recording system (Biosemi B.V., Amsterdam, 
the Netherlands) with active electrodes, an antialias-
ing filter (fifth-order sinc filter, half-power cutoff at 
204.8 Hz), and a 1024 Hz sampling rate. Although data 
are available for 30 scalp sites, along with horizontal and 
vertical electrooculogram electrodes, the present analy-
ses focused on the single site where a given component 
was largest (see Table 2).

The data used here had already passed through sev-
eral steps of the ERP CORE preprocessing pipeline. This 
pipeline began by shifting the event codes to reflect the 
intrinsic delay of the video monitor and resampling 
the data at 256 Hz with an antialiasing filter at 115 Hz. 
The data were then referenced to the average of the P9 
and P10 electrodes, except that the average of all scalp 
sites was used as the reference for the N170 paradigm. 
Independent component analysis (ICA) was used to 
correct the data for eyeblinks and eye movements. A 
noncausal Butterworth high-pass filter (half-amplitude 
cutoff of 0.1 Hz, 12 dB/oct roll-off) was applied to op-
timize the ICA decomposition, and the component 
weights were then transferred back to the original data 
so that the artifacts could be corrected in the unfiltered 
data (See Chapter 9 in Luck, 2022).

2.2  |  Filtering and additional 
preprocessing

To assess the effects of filtering on the SME and SNRSME, 
we separately filtered the continuous EEG data result-
ing from the preceding steps using a variety of differ-
ent combinations of low-pass and high-pass cutoffs. All 
cutoff frequencies listed in this article indicate the half-
amplitude point in the frequency response function. We 
used noncausal Butterworth filters (Hamming,  1998) 
because they are efficient, flexible, well behaved, and 
widely used for EEG and ERP signals. The companion 
paper (Zhang et  al.,  2024) indicated that a relatively 
gentle slope of 12 dB/octave was optimal for minimizing 

waveform distortions, so we used this roll-off for all 
analyses. However, it would be straightforward to re-
peat the analyses with a different slope using the data 
and scripts we have provided at https://​osf.​io/​z3hfp/​​
. It would also be straightforward to repeat the analy-
ses with other families of filters (e.g., finite impulse re-
sponse filters).

After the data were filtered, we implemented the re-
maining preprocessing steps used in the original ERP 
CORE paper. First, we epoched and baseline corrected the 
EEG using the time windows shown in Table 2. Then, we 
averaged the EEG epochs, excluding trials with artifacts or 
incorrect behavioral responses.

It is possible that filtering could influence the SNR of 
a given data set indirectly by impacting the artifact re-
jection and correction processes. However, it is possible 
and even advisable to use different filtering parameters 
for determining which trials to reject, for performing 
the ICA decomposition, and for averaging and scoring 
the ERP amplitudes and latencies. Thus, the question 
of what filter is optimal for the primary ERP analyses 
is independent of the question of what filter is optimal 
for artifact rejection or correction. To keep these issues 
separate, and to focus on the effects of filtering on the 
primary ERP scores, we performed artifact rejection and 
correction in a manner that was not influenced by the 
different filter settings being examined in the main anal-
yses. Specifically, we applied the rejection flags and ICA 
decompositions from the original ERP CORE data to 
the present data, independent of the filter settings being 
tested. The ERP CORE repository (https://​doi.​org/​10.​
18115/​​D5JW4R) provides the artifact rejection and cor-
rection parameters, along with the number of included 
and excluded trials.

2.3  |  Computing the signal, noise, and 
signal-to-noise ratio

We computed the signal, noise, and signal-to-noise ratio 
separately for each combination of the seven ERP com-
ponents and four scoring methods: mean amplitude, 
peak amplitude, peak latency, and 50% area latency. In 
an attempt to isolate a single ERP component (Zhang 
et al., 2024), the signal, noise, and signal-to-noise ratio 

T A B L E  2   Epoch window, baseline period, electrode site, and measurement window used for each ERP component.

N170 MMN N2pc P3 N400 LRP ERN

Epoch (ms) −200 to 800 −200 to 800 −200 to 800 −200 to 800 −200 to 800 −800 to 200 −600 to 400

Baseline period (ms) −200 to 0 −200 to 0 −200 to 0 −200 to 0 −200 to 0 −800 to −600 −400 to −200

Electrode site PO8 FCz PO7/PO8 Pz CPz C3/C4 FCz

Measurement window (ms) 110 to 150 125 to 225 200 to 275 300 to 600 300 to 500 −100 to 0 0 to 100
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were computed from the difference waves for a given 
component (e.g., the faces-minus-cars difference wave 
for the N170 component). However, only the noise 
values were relevant for the latency measures (see 
Section 1.1).

Table 2 shows the time windows and electrode sites 
that were used for each component. Mean amplitude 
was defined as the mean voltage during the time win-
dow. Peak amplitude was defined as the maximal pos-
itive voltage (for the P3 component) or the maximal 
negative voltage (for the other components) in that time 
window, and peak latency was defined as the latency at 
which that peak occurred. The 50% area amplitude was 
computed by taking the integral of the voltages during 
that time window and finding the point that bisected 
that integral into equal halves. To increase temporal 
precision, spline interpolation was used to upsample the 
waveforms by a factor of 10 before the latencies were 
scored (see Luck, 2014, for the rationale). The signal was 
estimated by obtaining a given score from the grand av-
erage difference waveform for a given component.

We used the RMS(SME) for a given score to estimate 
the noise. The SME was obtained separately from each 
participant, and values were aggregated across partici-
pants by computing the root mean square (RMS) of the 
single-participant values (see the companion paper for 
the rationale). The aggregate SNRSME was then com-
puted as the score from the grand average divided by the 
RMS(SME) of the single-participant scores.

For the N170, MMN, P3, N400, and ERN mean am-
plitude scores, we used built-in ERPLAB functions to 
compute the SME for each condition (e.g., separately 
for faces and cars). The mean amplitude SME values for 
the difference scores (e.g., faces minus cars) were then 
calculated as SMEA−B =

√

SMEA
2
+ SMEB

2. In this equation, 
SMEA–B is the SME of the difference between condi-
tions A and B, and SMEA and SMEB are the SMEs of the 
two individual conditions (see the companion paper for 
details).

This approach is not valid for differences between 
electrode sites, such as the contralateral-minus-
ipsilateral difference waves used to isolate the N2pc 
component and the lateralized readiness potential. It is 
also inappropriate for nonlinear scoring methods such 
as peak amplitude, peak latency, and 50% area latency. 
For these cases, we used bootstrapping with 1000 itera-
tions to estimate the SME directly from the difference 
wave (see the companion paper Zhang et al., 2024). The 
scripts used to compute SME values and the associated 
SNRSME values for the present study are provided at 
https://​osf.​io/​z3hfp/​​.

Note that ERPLAB uses a simple bootstrapping scheme 
that does not take into account systematic changes over 

the course of a recording session (i.e., autocorrelation). 
Most of the autocorrelation is a result of low-frequency 
drifts in the EEG signal, which was minimized by the 
high-pass filter and the baseline correction. In addition, 
each experiment was brief (~10 min), so psychological 
sources of systematic changes would be minimal. In the 
future, researchers may wish to use a blocked bootstrap-
ping procedure (Kunsch, 1989) to deal with any remaining 
autocorrelations.

2.4  |  Effects of increased noise

The ERP CORE data are quite clean, especially with re-
spect to line noise. To determine whether the results of 
the present study generalize to noisier data, we repeated 
all the analyses after adding a random-phase 60 Hz sinu-
soidal oscillation (to simulate line noise), white noise (to 
simulate muscle activity and other kinds of spiky noise), 
and pink noise (to simulate movement artifacts and other 
kinds of nonstationary noise). The noise was added to the 
continuous EEG prior to filtering. The 60 Hz oscillating 
noise had a peak-to-peak amplitude of 20 μV. The white 
noise and pink noise had a mean of 0 and a standard de-
viation of 7.07 μV (which was the same as the standard 
deviation of the line noise). Supplementary Figure S1 pro-
vides an example of the EEG after the addition of these 
types of noise, showing that the noise was moderate 
relative to the original EEG. The scripts at https://​osf.​io/​
z3hfp/​​ can be easily modified to see the effects of more 
extreme noise. The results of adding noise are provided 
in the Supplementary Materials, and the main manuscript 
indicates when different filter settings are appropriate for 
noisier data.

2.5  |  Quantifying waveform distortion

To quantify the distortion produced by a given filter, 
we applied the filter to an artificial waveform that was 
designed to simulate the grand average difference wave 
for a given component (e.g., the faces-minus-cars dif-
ference wave for the N170). The artificial waveforms 
were Gaussian or ex-Gaussian functions created using 
ERPLAB's Create Artificial ERP Waveform tool and de-
signed to match the grand average difference wave for 
a given component (see parameters in Table 3). We ap-
plied each candidate filter to the simulated waveform 
and calculated the artifactual peak percentage, defined 
as 100 times the amplitude at the time of the largest ar-
tifactual peak divided by the amplitude at the time of 
the true peak (with the amplitudes obtained from the 
filtered waveform).
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3   |   RESULTS

Each of the following sections provides the details of the 
filter optimization process for a given component. These 
sections are written so that readers can focus on the 
section for a single component rather than reading the 
sections for all seven components. However, we recom-
mend that all readers start with the section for the N170 
component, which provides a more detailed description 
of how the optimal filter settings were obtained. The 
sections are ordered according to ascending latency for 
the stimulus-locked components (N170, MMN, N2pc, 
P3, and N400), followed by the two response-locked 
components (LRP and ERN). The optimal filter settings 
resulting from this process are listed for all seven com-
ponents in Table 1.

3.1  |  The N170 component

As illustrated in Figure 1a, the stimuli in the N170 para-
digm consisted of a randomized sequence of faces, cars, 
scrambled faces, and scrambled cars (see Kappenman 
et  al.,  2021, for details). Participants were instructed to 
press one button for intact stimuli (faces or cars) and a 
different button for scrambled stimuli (scrambled faces or 
scrambled cars). Here, we focus solely on the ERPs elic-
ited by faces and cars. Figure  1b shows the grand aver-
age ERPs elicited by the faces and the cars, and Figure 1c 
shows the faces-minus-cars difference wave overlaid with 
the artificial N170 waveform.

3.1.1  |  N170 waveform distortion

Figure 1d shows the effects of several low-pass filters on 
the simulated N170 waveform. As the low-pass cutoff fre-
quency was reduced, the amplitude of the N170 was re-
duced, and the N170 became broader. With a 5 Hz cutoff 
frequency, the amplitude was reduced by more than 50%. 
Note that all cutoff frequencies listed in this article indi-
cate the half-amplitude point in the frequency response 
function, and the results would be different for half-power 

cutoffs at these frequencies. In addition, all filters exam-
ined here have a roll-off of 12 dB/octave, and the filter dis-
tortion would be greater for steeper roll-offs.

Figure  1e shows the effects of several high-pass filters 
on the simulated N170 waveform. Even with a 2 Hz cutoff, 
high-pass filtering produced very little amplitude reduction. 
However, higher cutoff frequencies led to clear artifactual 
peaks before and after the N170 peak. If these peaks were 
large enough to be statistically significant, they could lead 
to invalid conclusions (e.g., that P1 amplitude is greater 
for faces than for cars). However, this is unlikely to occur 
if the artifactual peak is less than 5% of the size of the true 
peak (Zhang et al., 2024). This 5% threshold for artifactual 
peak percentage was exceeded for the 1 Hz and 2 Hz cutoffs. 
Supplementary Figure  S2 provides artifactual peak per-
centage values for a denser sampling of cutoff frequencies. 
The 5% threshold for the artifactual peak percentage was 
exceeded for high-pass cutoff frequencies that exceeded 
0.9 Hz. Thus, 0.9 Hz (with a 12 dB/octave roll-off) is the 
highest high-pass cutoff frequency that we would recom-
mend for data sets like the ERP CORE N170 experiment.

3.1.2  |  Optimal filters for N170 mean 
amplitude and peak amplitude

Figure  2 shows the signal, noise, and signal-to-noise 
ratio for several combinations of low-pass and high-
pass cutoffs (see additional cutoffs in Supplementary 
Figure S2).

These figures show that the N170 mean and peak am-
plitude scores were dramatically reduced when the low-
pass cutoff was less than 20 Hz but with little impact of 
the high-pass cutoff. These effects are consistent with 
the effects of filtering on the simulated N170 shown in 
Figure  1. The noise—quantified as RMS(SME)—was 
also progressively reduced as the low-pass cutoff fre-
quency decreased and as the high-pass cutoff increased. 
Decreasing the low-pass cutoff frequency reduced the 
signal more than it reduced the noise, so decreasing 
the low-pass cutoff reduced the signal-to-noise ratio 
(SNRSME), especially for cutoffs of less than 30 Hz. This 
indicates that low-pass filtering is not helpful and can 

T A B L E  3   Parameters used to create the artificial waveforms.

Function

N170 MMN N2pc P3 N400 LRP ERN

Gaussian Gaussian Gaussian Ex-Gaussian Ex-Gaussian Gaussian Ex-Gaussian

Peak amplitude (μV) −4.6 −2.82 −1.62 8.6 −9.65 −3.2 −12.5

Gaussian mean (ms) 129 190 257 310 280 −47 76

Gaussian SD (ms) 14 33 28 58 65 36 26

Exponential tau (ms) 0 0 0 2000 1400 0 −300
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      |  7 of 24ZHANG et al.

actually be harmful to N170 amplitude scores. For data 
sets like the ERP CORE N170 experiment, we therefore 
recommend no low-pass filtering, or a low-pass filter 
with a cutoff of 30 Hz or higher if desired to minimize 
the “fuzz” in the waveforms so that differences between 
groups or conditions are easier to visualize (see Table 1). 
For noisier data, a low-pass cutoff at 30 Hz is helpful 
for N170 peak amplitude scores (see Supplementary 
Figures S3–S5).

By contrast, increasing the high-pass cutoff frequency 
reduced the noise more than it reduced the signal, result-
ing in a progressive increase in the SNRSME value as the 
cutoff frequency increased. However, high-pass cutoffs 
of greater than 0.9 Hz produced artifactual peaks that ex-
ceeded our 5% threshold (see Figure S2). Thus, a high-pass 
cutoff of 0.9 Hz provides the best SNRSME without produc-
ing excessive waveform distortion, so this is our recom-
mended cutoff for N170 amplitude scores.

3.1.3  |  Optimal filters for N170 peak 
latency and 50% area latency

The bottom row of Figure  2 shows how the noise level 
varied across filter settings for the N170 peak latency and 

50% area latency scores. As noted in Section  1.1, filters 
can substantially reduce amplitude values but typically 
produce minimal bias for latency scores, so we used the 
RMS(SME) rather than the SNRSME to quantify data qual-
ity for latency scores.

For peak latency, the RMS(SME) was best with a low-
pass cutoff of 10–20 Hz. With higher cutoff frequencies 
(e.g., 30 Hz), high-frequency noise in the data was not at-
tenuated and added variability to the latency of the peak. 
With lower cutoff frequencies (e.g., 5 Hz), the amplitude 
of the N170 was substantially reduced by the low-pass fil-
ter, making it more difficult to reliably determine the peak 
latency. The same pattern was observed for the 50% area 
latency score, but with a smaller impact of the filtering. 
Consequently, we recommend a low-pass cutoff frequency 
of 10–20 Hz for N170 peak latency and 50% area latency 
scores.

With a low-pass cutoff at 20 Hz, there was very lit-
tle impact of the high-pass filter on the noise for either 
peak latency or 50% area latency, except that the noise 
started to rise when the cutoff exceeded 0.9 Hz. Because 
the noise was largely the same for high-pass cutoffs be-
tween 0 and 0.9 Hz (see Supplementary Figure S2), any 
high-pass cutoff below 1 Hz would be justified for N170 
latency scores.

F I G U R E  1   (a) N170 face perception paradigm. Only the data from the face and car trials were used in the present analyses. (b) Grand 
average ERP waveforms from the PO8 electrode site for the face and car trials. (c) Grand average face-minus-car difference wave at PO8, 
along with the simulated N170 difference wave (Gaussian function, mean = 129 ms, SD = 14 ms, and peak amplitude = −4.6 μV). (d) Artificial 
waveform overlaid with the low-pass filtered version of that waveform for several different filter cutoffs. (e) Artificial waveform overlaid 
with the high-pass filtered version of that waveform for several different filter cutoffs. The number next to each high-pass filtered waveform 
is the artifactual peak percentage (APP). Note that the simulated waveforms were preceded and followed by 1000 ms of zero values to avoid 
edge artifacts. All the filters used here were noncausal Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the 
half-amplitude point.
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3.2  |  The mismatch negativity

As shown in Figure 3a, the mismatch negativity (MMN) was 
elicited using a passive auditory oddball task. Participants 
watched a silent video while they were presented with a 
task-irrelevant sequence of standard tones (1000 Hz, 80 dB, 
p = .8) and deviant tones of lower intensity (1000 Hz, 70 dB, 
p = .2). Each participant was presented with 800 standards 
and 200 deviants. Figure 3b shows the grand average wave-
forms for standard and deviant stimuli at the FCz electrode 
site, and Figure 3c shows the deviant-minus-standard dif-
ference wave overlaid with the simulated MMN.

3.2.1  |  MMN waveform distortion

Figure 3 shows the effects of several low-pass and high-
pass filters on the simulated MMN waveform. For low-pass 
filters, the peak amplitude of the MMN was progressively 

reduced as the low-pass cutoff decreased, and the MMN 
became progressively broader (see Figure 3d). For high-
pass filters, cutoffs above 0.5 Hz strongly distorted the 
MMN waveform, producing large opposite-polarity peaks 
before and after the MMN peak (see Figure 3e). Figure S6 
provides results for a denser sampling of high-pass cut-
off frequencies. The 5% threshold for the artifactual peak 
percentage was exceeded for high-pass cutoff frequencies 
greater than 0.5 Hz, so this is the highest high-pass cutoff 
frequency that we would recommend for data sets like 
the ERP CORE MMN experiment.

3.2.2  |  Optimal filters for MMN mean 
amplitude and peak amplitude

As shown in Figure  4, the SNRSME for low-pass filters 
was largely constant when the cutoff frequency was 
20 Hz and higher. For data sets like the ERP CORE MMN 

F I G U R E  2   N170 data quality metrics for four different scoring methods and several combinations of high-pass filter cutoffs (0, 0.01, 
0.05, 0.1, 0.5, 1, and 2 Hz) and low-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). The signal was defined as the score (e.g., peak 
amplitude) obtained from the grand average ERP difference wave (faces minus cars). The noise was defined as the root mean square (RMS) 
of the single-participant standardized measurement error (SME) for that score. The signal-to-noise ratio (SNR) was computed as the signal 
divided by the noise. SNR is unitless. For latency scores, the signal is not consistently reduced by filtering, so only the RMS(SME) value is 
provided for the peak latency and 50% area latency scores.
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      |  9 of 24ZHANG et al.

experiment, we therefore recommend no low-pass filter-
ing, or a low-pass filter with a cutoff of 20 Hz or higher if 
desired to make it easier to visualize the ERP waveforms 
(see Table 1). For noisier data, a low-pass cutoff of 30 Hz 
yields the highest SNRSME for peak amplitude scores (see 
Supplementary Figures S7–S9).

For high-pass filtering, the SNRSME increased as the high-
pass cutoff increased, particularly at cutoffs of 1 Hz and higher. 
However, waveform distortion also increased as the high-pass 
cutoff increased. A high-pass cutoff of 0.5 Hz yielded the 
highest SNRSME while remaining below our 5% threshold for 
artifactual peak distortion, so this is our recommended high-
pass cutoff frequency for MMN amplitude scores.

3.2.3  |  Optimal filters for MMN peak 
latency and 50% area latency

The bottom row of Figure 4 shows how the RMS(SME) 
values varied across filter settings for the MMN peak 
latency and 50% area latency scores. For peak latency, 
the data quality was largely unaffected by high-pass fil-
tering, but low-pass filtering had a substantial impact 
on the RMS(SME) values. The combination of a 0.5 Hz 
high-pass filter and a 10 Hz low-pass filter produced the 
lowest noise without exceeding our 5% threshold for 

artifactual peak percentage (see also Supplementary 
Figure  S6), so this is our recommendation for MMN 
peak latency. A 5 Hz cutoff improves the RMS(SME) for 
data containing moderate amounts of broadband noise 
(Supplementary Figures S8 and S9). However, this cut-
off will make the MMN appear to onset quite a bit ear-
lier than the true onset time (see Figure 3), so a 10 Hz 
cutoff is preferred when onset times are important for 
addressing the scientific goals of a study.

The results for 50% area latency were quite different. 
High-pass filtering again had little effect, but low-pass 
filtering actually increased the noise levels slightly (see 
Figure 4 and Supplementary Figure S6). We therefore rec-
ommend a high-pass cutoff of 0.5 Hz or lower and no low-
pass filtering (or a low-pass filter with a cutoff of 20 Hz or 
higher to make it easier to visualize the ERP waveforms).

3.3  |  The N2pc component

As illustrated in Figure  5a, the N2pc component was ob-
tained using a simple visual search task. For a given block, 
either pink or blue was designated the target color, with the 
other color being the nontarget. Each stimulus array con-
tained 1 pink square, 1 blue square, and 22 black squares. 
The side containing the target color was unpredictable, 

F I G U R E  3   (a) MMN passive auditory oddball task. (b) Grand average ERP waveforms at FCz electrode site for deviant and standard 
trials. (c) Grand average deviant-minus-standard wave at FCz along with its simulated MMN difference wave (Gaussian function, 
mean = 190 ms, SD = 33 ms, and peak amplitude = −2.82 μV). (d) Artificial waveform overlaid with the low-pass filtered version of that 
waveform for several different filter cutoffs. (e) Artificial waveform overlaid with the high-pass filtered version of that waveform for 
several different filter cutoffs. The number next to each high-pass filtered waveform is the artifactual peak percentage (APP). Note that the 
simulated waveforms were preceded and followed by 1000 ms of zero values to avoid edge artifacts. All the filters used here were noncausal 
Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.
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but the target and nontarget color were always on opposite 
sites. For each array, participants pressed one of two but-
tons to indicate the location (top or bottom) of a gap in the 
attended-color square (while maintaining central fixation). 
Each participant completed a total of 320 trials (160 trials 
with the target on each side). Figure 5b shows the grand av-
erage ERPs at the PO7/PO8 electrode site of the hemisphere 
contralateral or ipsilateral to the target. Figure 5c shows the 
grand average contralateral-minus-ipsilateral difference 
wave overlaid with the simulated N2pc.

3.3.1  |  N2pc waveform distortion

Figure 5d,e shows the effects of several low-pass and high-
pass filters on the simulated N2pc waveform. For low-
pass filters, the N2pc became substantially smaller and 
broader when the cutoff was below 20 Hz. For high-pass 

filters, cutoffs above 0.5 Hz strongly distorted the N2pc 
waveform, producing large opposite-polarity peaks before 
and after the N2pc peak. Figure S10 provides results for a 
denser sampling of high-pass cutoff frequencies. The 5% 
threshold for the artifactual peak percentage was exceeded 
for high-pass cutoff frequencies greater than 0.5 Hz, so 
this is the highest high-pass cutoff frequency that we 
would recommend for data sets like the ERP CORE N2pc 
experiment.

3.3.2  |  Optimal filters for N2pc mean 
amplitude and peak amplitude

As shown in Figure  6, low-pass filters had little im-
pact on the N2pc except when the cutoffs were less 
than 20 Hz. Peak amplitude was more impacted by fil-
tering, with reductions in SNRSME for frequencies less 

F I G U R E  4   MMN data quality metrics for four different scoring methods and several combinations of high-pass filter cutoffs (0, 
0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and low-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). The signal was defined as the score (e.g., 
peak amplitude) obtained from the grand average ERP difference wave (deviants minus standards). The noise was defined as the root 
mean square (RMS) of the single-participant standardized measurement error (SME) for that score. The signal-to-noise ratio (SNR) was 
computed as the signal divided by the noise. SNR is unitless. For latency scores, the signal is not consistently reduced by filtering, so only the 
RMS(SME) value is provided for the peak latency and 50% area latency scores.
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      |  11 of 24ZHANG et al.

than 20 Hz and also for frequencies greater than 40 Hz. 
For data sets like the ERP CORE N2pc experiment, we, 
therefore, recommend a low-pass cutoff of ≥20 Hz (or no 
low-pass filtering) for mean amplitude, and 20–40 Hz 
for peak amplitude. For noisier data, a low-pass cut-
off of 20 Hz is optimal for peak amplitude scores (see 
Supplementary Figures  S11–S13; this assumes a high-
pass cutoff of 0.5 Hz).

For high-pass filtering, the SNRSME increased as the 
high-pass cutoff increased, particularly at cutoffs of 0.5 Hz 
and higher (see Figure 6 and Supplementary Figure S10). 
However, waveform distortion also increased as the high-
pass cutoff increased. A high-pass cutoff of 0.5 Hz yielded 
the highest SNRSME while remaining below our 5% thresh-
old for artifactual peak distortion, so this is our recom-
mended cutoff.

3.3.3  |  Optimal filters for N2pc peak 
latency and 50% area latency

The bottom row of Figure 6 shows how the RMS(SME) 
values varied across filter settings for N2pc peak latency 
and 50% area latency scores. For peak latency, low-pass 
filtering had a substantial impact on the RMS(SME) val-
ues but high-pass filtering had very little impact. The 

combination of a 10 Hz low-pass filter with either no high-
pass filter or a .01Hz high-pass cutoff produced the lowest 
noise without exceeding our 5% threshold for artifactual 
peak percentage (see also Supplementary Figure S10), so 
this is our recommendation for N2pc peak latency.

For 50% area latency, a 5 Hz low-pass filter produced 
the lowest RMS(SME) values, combined with either no 
high-pass filter or a .01Hz high-pass cutoff, so this is our 
recommendation. Note, however, that a 5 Hz low-pass fil-
ter will make the N2pc appear to onset quite a bit earlier 
than the true onset time (see Figure 5), so a 10 Hz low-pass 
cutoff is preferred when onset times are important for ad-
dressing the scientific goals of a study.

3.4  |  The P3 component

As illustrated in Figure 7a, an active visual oddball task was 
used to elicit the P3 component. Participants were shown 
a randomized sequence of five letters (A, B, C, D, and E), 
with a probability of p = .2 for each letter. One of the five 
letters was designed as the target for a given block, and par-
ticipants were instructed to press one button when the tar-
get was presented and a different button for any nontarget. 
For example, if D was the target, participants pressed the 
target button for D and the non-target button for A, B, C, or 

F I G U R E  5   (a) N2pc simple visual search task. (b) Grand average waves from the PO7/PO8 electrode sites for contralateral and 
ipsilateral conditions. (c) Grand average contralateral-minus-ipsilateral difference wave at PO7/PO8, along with the simulated N2pc 
difference wave (Gaussian function, mean = 257 ms, SD = 28 ms, and peak amplitude = −1.62 μV). (d) Artificial waveform overlaid with the 
low-pass filtered version of that waveform for several different filter cutoffs. (e) Artificial waveform overlaid with the high-pass filtered 
version of that waveform for several different filter cutoffs. The number next to each high-pass filtered waveform is the artifactual peak 
percentage (APP). Note that the simulated waveforms were preceded and followed by 1000 ms of zero values to avoid edge artifacts. All the 
filters used here were noncausal Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.
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E. Each participant received 40 target trials (referred to as 
rare trials) and 160 nontarget trials (referred to as frequent 
trials). Figure 7b shows the grand average ERP waveforms 
at the Pz electrode site for the rare and frequent conditions, 
and Figure  7c shows the rare-minus-frequent difference 
wave overlaid with the simulated P3.

3.4.1  |  P3 waveform distortion

Figure  7d,e shows the effects of several low-pass and 
high-pass filters on the simulated P3 waveform. Low-
pass filters produced minimal distortion of this waveform 
for cutoffs of 10 Hz or higher. However, high-pass filters 
with cutoffs of 0.5 Hz or higher created substantial dis-
tortion, with a large negative artifactual peak preceding 
the true P3 wave that could easily be mistaken for an N2 
effect. Figure S14 provides results for a denser sampling 
of high-pass cutoff frequencies. The 5% threshold for the 

artifactual peak percentage was exceeded for high-pass 
cutoff frequencies greater than 0.2 Hz, so this is the high-
est high-pass cutoff frequency that we would recommend 
for data sets like the ERP CORE P3 experiment.

3.4.2  |  Optimal filters for P3 mean 
amplitude and peak amplitude

As shown in Figure 8, low-pass filters had minimal impact 
on the SNRSME for mean and peak P3 amplitude scores 
(unless an inadvisably strong high-pass filter was also 
used). For data sets like the ERP CORE P3 experiment, we 
therefore recommend no low-pass filtering, or a low-pass 
filter with a cutoff of 10 Hz or higher if desired to make it 
easier to visualize the ERP waveforms. For noisier data, a 
10 Hz low-pass filter for peak amplitude scores is slightly 
better (see Supplementary Figures S15–S17; this assumes 
a high-pass cutoff of <0.5 Hz).

F I G U R E  6   N2pc data quality metrics for four different scoring methods and several combinations of high-pass filter cutoffs (0, 0.01, 
0.05, 0.1, 0.5, 1, and 2 Hz) and low-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). The signal was defined as the score (e.g., peak 
amplitude) obtained from the grand average ERP difference wave (contralateral minus ipsilateral). The noise was defined as the root 
mean square (RMS) of the single-participant standardized measurement error (SME) for that score. The signal-to-noise ratio (SNR) was 
computed as the signal divided by the noise. SNR is unitless. For latency scores, the signal is not consistently reduced by filtering, so only the 
RMS(SME) value is provided for the peak latency and 50% area latency scores.
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For high-pass filtering, the SNRSME increased as the 
high-pass cutoff increased up to 0.5 Hz (because the re-
duction in noise outweighed the small reduction in signal) 
but then decreased for higher cutoffs (because the large 
reduction in signal outweighed the reduction in noise; see 
Figure 8 and Supplementary Figure S14). A high-pass cut-
off of 0.2 Hz yielded the highest SNRSME while remaining 
below our 5% threshold for artifactual peak distortion, so 
this is our recommended cutoff.

3.4.3  |  Optimal filters for P3 peak 
latency and 50% area latency

The bottom row of Figure 8 shows how the RMS(SME) 
values varied across filter settings for P3 peak latency 
and 50% area latency scores. For both peak latency and 
50% area latency, a low-pass cutoff of 5 Hz produced the 
lowest noise, so that is our recommendation. However, 
this cutoff also produces a modest decrease in onset la-
tency (Figure  7), so a low-pass cutoff of 10 Hz may be 
preferred if onset times are important. A high-pass cut-
off of 0.2 Hz yielded the lowest noise while remaining 
below our 5% threshold for artifactual peak distortion (see 
Supplementary Figure S14), so this is our recommended 
high-pass cutoff.

3.5  |  The N400 component

As depicted in Figure 9a, the N400 component was elic-
ited using a word pair judgment paradigm. Each trial con-
sisted of a red prime word followed by a green target word. 
Participants were required to report whether the green 
word was semantically related (p = .5) or unrelated (p = .5) 
to the preceding red word by pressing one of two buttons. 
A total of 120 trials were presented to each participant (60 
trials for related word pairs and 60 trials for unrelated word 
pairs). Figure 9b displays the grand average waveforms for 
the unrelated and related words at the CPz electrode site, 
and Figure  9c shows the unrelated-minus-related differ-
ence wave overlaid with the simulated N400.

3.5.1  |  N400 waveform distortion

Figure 9d,e shows the effects of several low-pass and high-
pass filters on the simulated N400 waveform. As was 
observed for the P3, low-pass filters produced minimal dis-
tortion of the N400 waveform as long as the cutoff was 10 Hz 
or higher. However, high-pass filters with cutoffs of 0.5 Hz 
or higher created substantial distortion, with a large positive 
artifactual peak preceding the true N400 wave that could eas-
ily be mistaken for a P2 effect. Figure S18 provides results 

F I G U R E  7   (a) P3 active visual oddball paradigm. (b) Grand average ERP waveforms from the Pz electrode site for the frequent and rare 
trials. (c) Grand average rare-minus-frequent difference wave at Pz, along with the simulated P3 difference wave (Ex-Gaussian function, 
mean = 310 ms, SD = 58 ms, λ = 2000 ms, and peak amplitude = 8.6 μV). (d) Artificial waveform overlaid with the low-pass filtered version of 
that waveform for several different filter cutoffs. (e) Artificial waveform overlaid with the high-pass filtered version of that waveform for 
several different filter cutoffs. The number next to each high-pass filtered waveform is the artifactual peak percentage (APP). Note that the 
artificial waveforms were preceded and followed by 1000 ms of zero values to avoid edge artifacts. All the filters used here were noncausal 
Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.
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for a denser sampling of high-pass cutoff frequencies. The 5% 
threshold for the artifactual peak percentage was exceeded 
for high-pass cutoff frequencies greater than 0.3 Hz, so this is 
the highest high-pass cutoff frequency that we would recom-
mend for data sets like the ERP CORE N400 experiment.

3.5.2  |  Optimal filters for N400 mean 
amplitude and peak amplitude

As shown in Figure 10, low-pass filters had minimal im-
pact on the SNRSME for mean and peak N400 amplitude 
scores (unless an inadvisably strong high-pass filter was 
also used). For data sets like the ERP CORE N400 experi-
ment, we therefore recommend no low-pass filtering, or a 
low-pass filter with a cutoff of 10 Hz or higher if desired to 
make it easier to visualize the ERP waveforms. For noisier 

data, there is a small benefit to applying a 5 or 10 Hz low-
pass filter (see Supplementary Figures S19–S21).

For high-pass filtering, the SNRSME increased as the 
high-pass cutoff increased up to 0.2 Hz (presumably re-
flecting noise reduction) but then decreased for higher 
cutoffs (presumably because the reduction in signal 
outweighed the reduction in noise; see Figure  10 and 
Supplementary Figure S18). A high-pass cutoff of 0.2 Hz 
was also below our 5% threshold for artifactual peak dis-
tortion, so this is our recommended high-pass cutoff.

3.5.3  |  Optimal filters for N400 peak 
latency and 50% area latency

The bottom row of Figure 10 shows how the RMS(SME) 
values varied across filter settings for the N400 peak 

F I G U R E  8   P3 data quality metrics for four different scoring methods and several combinations of high-pass filter cutoffs (0, 0.01, 0.05, 
0.1, 0.5, 1, and 2 Hz) and low-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). The signal was defined as the score (e.g., peak amplitude) 
obtained from the grand average ERP difference wave (frequent minus rare). The noise was defined as the root mean square (RMS) of the 
single-participant standardized measurement error (SME) for that score. The signal-to-noise ratio (SNR) was computed as the signal divided 
by the noise. SNR is unitless. For latency scores, the signal is not consistently reduced by filtering, so only the RMS(SME) value is provided 
for the peak latency and 50% area latency scores.
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latency and 50% area latency scores. For both peak la-
tency and 50% area latency, a low-pass cutoff of 5 Hz pro-
duced the lowest noise, so that is our recommendation. 
However, this cutoff also produces a modest decrease in 
onset latency (Figure 9), so researchers may prefer a low-
pass cutoff of 10 Hz when onset latencies are important. A 
high-pass cutoff of 0.2 Hz yielded the lowest noise while 
remaining below our 5% threshold for artifactual peak 
distortion (see supplementary Figure S18), so this is our 
recommended high-pass cutoff.

3.6  |  The lateralized readiness potential

As depicted in Figure 11a, the lateralized readiness po-
tential (LRP) was elicited using a flankers paradigm. 
In this paradigm, each stimulus consisted of a central 
arrow surrounded by flanking arrows, which could ei-
ther point in the same direction as the central arrow 
or in the opposite direction. On each trial, participants 
indicated whether the central arrow was pointing left-
ward (p = .5, 200 trials) or rightward (p = .5, 200 trials) 
by pressing a button with the corresponding hand. 
Figure  11b shows the grand average ERPs at the C3/
C4 electrode site of the hemisphere contralateral or ip-
silateral to the responding hand (on trials with correct 

responses). Figure  11c shows that the grand average 
contralateral-minus-ipsilateral difference wave overlaid 
with the simulated LRP.

The LRP can be analyzed either time locked to the 
stimulus or time locked to the response. Here, we used 
response-locked averages. The LRP is typically broader 
in stimulus-locked averages than in response-locked av-
erages, so different filter parameters may be appropriate 
for stimulus-locked averages. It would be straightforward 
for researchers to modify the LRP scripts at https://​osf.​io/​
z3hfp/​​ to analyze stimulus-locked averages.

3.6.1  |  LRP waveform distortion

Figure  11d,e shows the effects of several low-pass and 
high-pass filters on the simulated LRP waveform. For 
low-pass filters, the LRP became noticeably smaller and 
broader for cutoffs below 20 Hz. For high-pass filters, 
cutoffs above 0.1 Hz clearly distorted the LRP wave-
form, producing large opposite-polarity peaks before 
and after the LRP peak. Figure S22 provides results for 
a denser sampling of high-pass cutoff frequencies. The 
5% threshold for the artifactual peak percentage was 
exceeded for high-pass cutoff frequencies greater than 
0.3 Hz, so this is the highest high-pass cutoff frequency 

F I G U R E  9   (a) N400 word pair judgment paradigm. (b) Grand average ERP waveforms at CPz electrode site for unrelated and related 
trials. (c) Grand average unrelated-minus-related difference wave along with its simulated N400 difference wave (Ex-Gaussian function, 
mean = 280 ms, SD = 65 ms, λ = 1400 ms, and peak amplitude = −9.65 μV). (d) Artificial waveform overlaid with the low-pass filtered version 
of that waveform for several different filter cutoffs. (e) Artificial waveform overlaid with the high-pass filtered version of that waveform for 
several different filter cutoffs. The number next to each high-pass filtered waveform is the artifactual peak percentage (APP). Note that the 
artificial waveforms were preceded and followed by 1000 ms of zero values to avoid edge artifacts. All the filters used here were noncausal 
Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.
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that we would recommend for data sets like the ERP 
CORE LRP experiment.

3.6.2  |  Optimal filters for LRP mean 
amplitude and peak amplitude

As shown in Figure 12, low-pass filters had little impact 
on the SNRSME for LRP mean amplitude scores except 
that the SNRSME was reduced for cutoffs less than 30 Hz. 
For peak amplitude scores, the SNRSME was also reduced 
for low-pass cutoff frequencies greater than 30 Hz (ex-
cept when combined with an inadvisably high high-pass 
cutoff).

For high-pass filtering, the SNRSME increased as the 
high-pass cutoff increased for both mean and peak am-
plitude (see also Supplementary Figure  S22). However, 
waveform distortion also increased as the high-pass cutoff 
increased. A high-pass cutoff of 0.3 Hz yielded the highest 

SNRSME while remaining below our 5% threshold for arti-
factual peak distortion. At this high-pass cutoff frequency, 
a low-pass cutoff of 30 Hz yielded the highest SNRSME for 
peak amplitude. Thus, for data sets like the ERP CORE 
LRP experiment, we recommend a high-pass cutoff of 
0.3 Hz combined with a low-pass cutoff of 30 Hz for peak 
amplitude or ≥30 Hz for mean amplitude. For noisier data, 
decreasing the low-pass cutoff to 20 Hz would slightly 
improve the SNRSME for peak amplitude scores (see 
Supplementary Figures S23–S25).

3.6.3  |  Optimal filters for LRP peak 
latency and 50% area latency

The bottom row of Figure 12 shows how the RMS(SME) 
values varied across filter settings for LRP peak latency 
and 50% area latency scores. For peak latency, low-pass 
filtering had a substantial impact on the RMS(SME) 

F I G U R E  1 0   N400 data quality metrics for four different scoring methods and several combinations of high-pass filter cutoffs (0, 
0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and low-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). The signal was defined as the score (e.g., peak 
amplitude) obtained from the grand average ERP difference wave (unrelated minus related). The noise was defined as the root mean square 
(RMS) of the single-participant standardized measurement error (SME) for that score. The signal-to-noise ratio (SNR) was computed as the 
signal divided by the noise. SNR is unitless. For latency scores, the signal is not consistently reduced by filtering, so only the RMS(SME) 
value is provided for the peak latency and 50% area latency scores.
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values but high-pass filtering had very little impact. The 
combination of a 5 Hz low-pass cutoff and a high-pass cut-
off of 0.3 Hz produced the lowest noise without exceeding 
our 5% threshold for artifactual peak percentage (see also 
Supplementary Figure S22), so this is our recommenda-
tion for LRP peak latency.

For 50% area latency, the filter cutoffs had remark-
ably little effect on the RMS(SME) metric of noise (except 
when the high-pass cutoff exceeded the 5% artifactual 
peak threshold). The lowest noise value was obtained for 
a 0.3 Hz high-pass cutoff combined with a 5 Hz low-pass 
cutoff, so that is our recommendation. For both peak la-
tency and area latency, a 5 Hz low-pass filter leads to a no-
ticeably earlier LRP onset and later LRP offset, so a 10 Hz 
high-pass cutoff may be more appropriate when onset 
times are important for addressing the scientific goals of 
a study.

3.7  |  The error-related negativity

As shown in Figure  13a, the error-related negativity 
(ERN) was obtained from the same flankers paradigm 
used for the LRP (as described in Section 3.6). Whereas 
the LRP was defined as the difference between the 

contralateral and ipsilateral hemispheres (relative to the 
response hand), the ERN was defined as the difference 
between correct trials and error trials at a single mid-
line electrode site (FCz). Each participant made correct 
responses on approximately 320–360 trials and incor-
rect responses on approximately 40–80 trials. Response-
locked averages were used for the ERN. Figure  13b 
presents the grand average ERP waveforms for trials 
with correct versus incorrect responses, and Figure 13c 
shows the incorrect-minus-correct difference wave 
overlaid with the simulated ERN.

3.7.1  |  ERN waveform distortion

Figure  13d,e shows the effects of several low-pass and 
high-pass filters on the simulated ERN waveform. For 
low-pass filters, the ERN became noticeably smaller and 
broader for cutoffs below 10 Hz. For high-pass filters, cut-
offs of 0.5 Hz and higher clearly distorted the LRP wave-
form, producing distinct positive peaks before and after 
the ERN peak. Figure  S26 provides results for a denser 
sampling of high-pass cutoff frequencies. The 5% thresh-
old for the artifactual peak percentage was exceeded for 
high-pass cutoff frequencies greater than 0.4 Hz (when 

F I G U R E  1 1   (a) LRP flankers task. (b) Grand average ERP waveforms from the C3/C4 electrode sites for the contralateral and ipsilateral 
trials. (c) Grand average contralateral-minus-ipsilateral difference wave at C3/C4, along with the simulated LRP difference wave (Gaussian 
function, mean = −47 ms, SD = 36 ms, and peak amplitude = −3.2 μV). (d) Artificial waveform overlaid with the low-pass filtered version of 
that waveform for several different filter cutoffs. (e) Artificial waveform overlaid with the high-pass filtered version of that waveform for 
several different filter cutoffs. The number next to each high-pass filtered waveform is the artifactual peak percentage (APP). Note that the 
artificial waveforms were preceded and followed by 1000 ms of zero values to avoid edge artifacts. All the filters used here were noncausal 
Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.
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combined with most low-pass cutoffs), so this is the high-
est high-pass cutoff frequency that we would recommend 
for data sets like the ERP CORE ERN experiment.

3.7.2  |  Optimal filters for ERN mean 
amplitude and peak amplitude

As shown in Figure 14, low-pass filters had relatively little 
impact on the SNRSME for ERN mean amplitude scores, 
except that the SNRSME was reduced for cutoffs less than 
20 Hz. For peak amplitude scores, the SNRSME was maxi-
mal at 20 Hz (except when combined with an inadvisably 
high high-pass cutoff). For noisier data, a low-pass cutoff 
of 20 Hz yields the highest SNRSME for peak amplitude 
scores (see Supplementary Figures S27–S29).

For high-pass filtering, the SNRSME increased as 
the high-pass cutoff increased for both mean and peak 

amplitude (see also Supplementary Figure S26). However, 
waveform distortion also increased as the high-pass cutoff 
increased. A high-pass cutoff of 0.4 Hz yielded the highest 
SNRSME for both mean and peak amplitude while remain-
ing below our 5% threshold for artifactual peak distortion. 
Thus, for data sets like the ERP CORE LRP experiment, we 
recommend a high-pass cutoff of 0.4 Hz combined with a 
low-pass cutoff of 20 Hz for peak amplitude or ≥20 Hz for 
mean amplitude.

3.7.3  |  Optimal filters for ERN peak 
latency and 50% area latency

The bottom row of Figure 14 shows how the RMS(SME) 
values varied across filter settings for the ERN peak la-
tency and 50% area latency scores. For both peak la-
tency and 50% area latency, the lowest noise levels were 

F I G U R E  1 2   LRP data quality metrics for four different scoring methods and several combinations of high-pass filter cutoffs (0, 0.01, 
0.05, 0.1, 0.5, 1, and 2 Hz) and low-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). The signal was defined as the score (e.g., peak 
amplitude) obtained from the grand average ERP difference wave (contralateral minus ipsilateral). The noise was defined as the root 
mean square (RMS) of the single-participant standardized measurement error (SME) for that score. The signal-to-noise ratio (SNR) was 
computed as the signal divided by the noise. SNR is unitless. For latency scores, the signal is not consistently reduced by filtering, so only the 
RMS(SME) value is provided for the peak latency and 50% area latency scores.
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produced by a low-pass cutoff of 5 Hz combined with no 
high-pass filtering (see also Supplementary Figure  S26), 
so this is our recommendation. However, a 5 Hz low-pass 
filter produces a noticeably earlier ERN onset and later 
ERN offset, so a 10 Hz high-pass cutoff may be more ap-
propriate when onset times are important for addressing 
the scientific goals of a study.

4   |   DISCUSSION

The present study examined the impact of a broad range 
of low-pass and high-pass filter cutoffs on seven com-
mon ERP components recorded from a set of neurotypi-
cal young adults. We quantitatively assessed the effects 
of a broad range of filter cutoffs on waveform distor-
tion and data quality (signal, noise, and signal-to-noise 
ratio). The observed effects led to recommendations for 
optimal filter cutoffs that maximize data quality while 
producing minimal waveform distortion (Table  1). By 
repeating the analyses after adding artificial noise to 
the data, we were also able to provide recommenda-
tions for data with moderately greater noise levels. 
These recommendations were based on objective, data-
driven criteria, and similar studies that follow these 
recommendations should have improved data quality 

and therefore greater statistical power without induc-
ing problematic waveform distortion. The data and the 
analysis scripts are available online at https://​osf.​io/​
z3hfp​, making it straightforward for researchers to re-
peat these analyses with different filters, different noise 
levels, or different thresholds for waveform distortion. 
In addition, the companion paper (Zhang et  al.,  2024) 
describes how the present approach can be applied to 
other data sets using tools available in version 9.2 and 
higher of ERPLAB Toolbox.

We would like to emphasize that the present results 
demonstrate that previous recommendations (Acunzo 
et  al.,  2012; Duncan et  al.,  2009; Luck,  2014; Widmann 
et  al.,  2015) were less than optimal, especially recom-
mendations of high-pass cutoffs of ≤0.1 Hz for relatively 
narrow components such as N170 and MMN. This shows 
the value of using a quantitative, data-driven approach for 
selecting filter settings.

We would also like to emphasize that the optimal fil-
ter settings for a given experiment depend on the wave-
shape of the ERP components. Thus, researchers should 
use the recommended filter settings shown in Table 1 only 
for studies that yield similar waveshapes to those in ERP 
CORE data. It is also important to note that the present 
approach to identifying optimal filter parameters requires 
that the component of interest be isolated from the ERP 

F I G U R E  1 3   (a) ERN flankers task. (b) Grand average ERP waveforms from the FCz electrode site for correct and incorrect responses. 
(c) Grand average incorrect-minus-correct difference wave at FCz, along with its simulated ERP difference wave (Ex-Gaussian function, 
mean = 76 ms, SD = 26 ms, λ = −300 ms, and peak amplitude = −12.5 μV). (d) Artificial waveform overlaid with the low-pass filtered version 
of that waveform for several different filter cutoffs. (e) Artificial waveform overlaid with the high-pass filtered version of that waveform for 
several different filter cutoffs. The number next to each high-pass filtered waveform is the artifactual peak percentage (APP). Note that the 
artificial waveforms were preceded and followed by 1000 ms of zero values to avoid edge artifacts. All the filters used here were noncausal 
Butterworth filters with a slope of 12 dB/octave, and cutoff frequencies indicate the half-amplitude point.
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waveform. The present study used difference waves for 
this purpose. If multiple components are present, addi-
tional steps must be taken to ensure that the filtering of 
one component does not create unacceptable levels of dis-
tortion in other components (for details, see the compan-
ion paper [Zhang et al., 2024]).

4.1  |  Effects of filter cutoffs on data 
quality and waveform distortion

In some cases, we found fairly large differences in noise 
levels and SNR for different filter settings. For example, 
the SNR for N170 peak amplitude was reduced by 50% 
when a 5 Hz low-pass filter was applied relative to when 
the cutoff was 30 Hz. Similarly, the SNR for P3 mean 
amplitude was 20% greater for the high-pass cutoff of 
0.2 Hz recommended here than for the cutoff of 0.01 Hz 
recommended by Duncan et al.  (2009) and Luck (2005). 

Moreover, increasing the high-pass cutoff from 0.2 Hz to 
1 Hz for the P3 increased the size of the artifactual peak 
by a factor of almost 10 (see Supplementary Figure S14). 
These results provide quantitative evidence that some fil-
ter cutoffs are much better than others.

On the other hand, small changes in cutoff frequencies 
typically produced only small changes in data quality and 
waveform distortion, so slight deviations from the recom-
mendations shown in Table 1 would be expected to have 
only a minor impact. For example, our recommended 
high-pass filter cutoff for P3 mean amplitude was 0.2 Hz 
because the SNR was higher at 0.2 Hz than at 0.1 Hz and 
because cutoffs above 0.2 Hz led to an artifactual peak 
percentage that exceeded our 5% cutoff (see supplemental 
Figure S14). However, the SNR was only slightly better at 
0.2 Hz than at 0.1 Hz (3.0 vs. 2.9), which is unlikely to be a 
meaningful difference in most studies. Moreover, it is pos-
sible that the SNR would be slightly better at 0.1 Hz than 
at 0.2 Hz in a different sample of participants. Similarly, 

F I G U R E  1 4   ERN data quality metrics for four different scoring methods and several combinations of high-pass filter cutoffs (0, 
0.01, 0.05, 0.1, 0.5, 1, and 2 Hz) and low-pass filter cutoffs (5, 10, 20, 30, 40, 80, and 115 Hz). The signal was defined as the score (e.g., peak 
amplitude) obtained from the grand average ERP difference wave (correct minus incorrect). The noise was defined as the root mean square 
(RMS) of the single-participant standardized measurement error (SME) for that score. The signal-to-noise ratio (SNR) was computed as the 
signal divided by the noise. SNR is unitless. For latency scores, the signal is not consistently reduced by filtering, so only the RMS(SME) 
value is provided for the peak latency and 50% area latency scores.
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a cutoff of 0.2 Hz might exceed our 5% threshold for the 
artifactual peak percentage in a study with a broader P3 
waveform. However, the 0.2 Hz cutoff for P3 mean ampli-
tude and the other values shown in Table 1 represent the 
current best guesses for optimal filter cutoffs for studies 
like the ERP CORE, and it would be sensible to use these 
cutoffs unless there is a good reason to use something else 
or until quantitative recommendations become available 
from a larger data set.

4.2  |  Deviating from the present 
recommendations

One such reason for deviating from these recommenda-
tions would be the presence of very different noise levels. 
By adding noise to the ERP CORE data, we were able to 
demonstrate that more aggressive filtering of high fre-
quencies (i.e., lower low-pass cutoffs) becomes optimal 
when there is more high-frequency or broadband noise in 
the data. However, the addition of moderately large noise 
did not impact our recommendations for high-pass filter-
ing. This reflects the fact that our high-pass cutoff recom-
mendations were mainly driven by the artifactual peak 
percentage, not by the SNR. For example, the best SNR 
for P3 mean amplitude was produced by a 0.5 Hz high-
pass cutoff, but we recommended a 0.2 Hz cutoff to avoid 
exceeding the 5% threshold for artifactual peak percent-
age. For studies with very high levels of low-frequency 
noise and/or small numbers of trials, the increased SNR 
resulting from a 0.5 Hz high-pass cutoff might make it 
worthwhile to increase the threshold for artifactual peak 
percentage. In these cases, an artifactual peak of even 10% 
would be unlikely to be statistically significant and lead to 
incorrect conclusions.

Researchers might also choose to use the same filter 
cutoffs for different scoring methods, opting for simplicity 
over optimal data quality. For example, a researcher who 
is measuring both the mean amplitude and the peak la-
tency of the ERN might use a bandpass of 0.4–10 Hz for 
both scores, even though a bandpass of 0.4–20 Hz is rec-
ommended for ERN mean amplitude. This would produce 
only a 2% drop in SNR (see Supplementary Figure S26), 
which is unlikely to change the results of a single study. 
By contrast, if the optimal LRP peak latency bandpass 
of 0.3–5 Hz is also applied to LRP mean amplitude data, 
this would produce a 17% reduction in SNR relative to 
the optimal mean amplitude bandpass of 0.3–30 Hz (see 
Supplementary Figure  S22). This is more likely to be 
problematic.

In the end, decisions about filter cutoffs should reflect 
the scientific goals of a given study along with the nature 
of the data being filtered. The present approach to filter 

selection allows researchers to make these decisions in an 
informed manner.

4.3  |  General patterns

Several general patterns can be seen in the optimal filter 
values shown in Table 1. First, the optimal filter settings 
depend on the specific scoring method. Mean amplitude 
scores are largely insensitive to high-frequency noise, 
whereas high-frequency noise can distort peak amplitude 
and peak latency (Clayson et al., 2013). Consequently, a 
low-pass filter is ordinarily unnecessary for mean ampli-
tude, but it can improve data quality for peak amplitude 
and peak latency. For example, whereas low-pass filter-
ing does not improve the SNR for N2pc mean amplitude, 
applying a 10 Hz low-pass filter reduces the noise level of 
N2pc peak latency scores by approximately 20% when the 
data are contaminated by substantial broadband noise 
(see Supplementary Figure S12). However, low-pass filter-
ing had much less effect on N2pc 50% area latency scores.

Our results also revealed that the optimal filter set-
tings depend on the shape of the ERP component that is 
being analyzed. As a component becomes broader, it suf-
fers less amplitude reduction from low-pass filtering but 
more amplitude reduction from high-pass filtering. In 
addition, high-pass filters produce larger artifactual peaks 
in broader components than in narrower components. 
Consequently, relatively high low-pass and high-pass cut-
offs are optimal for narrower components (e.g., N170), 
and relatively low low-pass and high-pass cutoffs are op-
timal for broader components (e.g., P3). Researchers can 
use this finding to make informed guesses about optimal 
cutoffs for components that were not examined in the 
present study.

4.4  |  Limitations and future directions

The present study has some important limitations. First, 
our recommendations may not be applicable for recording 
setups that yield very different types or levels of noise. For 
example, data collected with dry electrodes often contain 
substantially more noise (Kam et al., 2019; Li et al., 2020; 
Shad et  al.,  2020). Similarly, our recommendations may 
not generalize to mobile experiments, for which a pre-
vious study has shown that higher high-pass filter cut-
offs are beneficial (Klug & Gramann, 2021). However, it 
would be important for future research on optimal filter 
values for these systems to use an approach like we have 
used, which quantifies the data quality for the specific 
score of interest and also quantifies the amount of wave-
form distortion.
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Another limitation is that the data used in the pres-
ent study were obtained from highly cooperative college 
students, and the optimal filter settings may differ con-
siderably in other populations, such as infants or indi-
viduals with clinical disorders. For example, in infant 
EEG recordings, higher high-pass filter cutoffs (e.g., 
1 Hz) are currently viewed as appropriate (Debnath 
et  al.,  2020; Gabard-Durnam et  al.,  2018). However, 
such high cutoffs may induce problematic waveform 
distortion and may attenuate the signal more than the 
noise. Consequently, a careful quantitative analysis of 
a broad set of paradigms and scoring methods would 
be needed to determine the optimal filter settings for 
infants, specific clinical populations, and other groups 
that are likely to be quite different from the college stu-
dents tested in the ERP CORE.

Finally, the present study assessed only four scoring 
methods, and it did not consider onset latencies or mass 
univariate approaches. Moreover, it focused only on the 
Butterworth family of infinite impulse response filters, 
and it is possible that the results would be different for 
other filter families (e.g., finite impulse response filters). 
It would be valuable for future research to determine the 
optimal filter settings for other families of filters and other 
ERP scoring algorithms.
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quality metrics.
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Figure S5. Data quality metrics for the N170 component 
with pink noise.
Figure S6. MMN artifactual peak percentage and data 
quality metrics.
Figure S7. Data quality metrics for the MMN component 
with 60 Hz line noise.
Figure S8. Data quality metrics for the MMN component 
with white noise.
Figure S9. Data quality metrics for the MMN component 
with pink noise.
Figure S10. N2pc artifactual peak percentage and data 
quality metrics.
Figure S11. Data quality metrics for the N2pc component 
with 60 Hz line noise.
Figure S12. Data quality metrics for the N2pc component 
with white noise.
Figure S13. Data quality metrics for the N2pc component 
with pink noise.
Figure S14. P3 artifactual peak percentage and data 
quality metrics.
Figure S15. Data quality metrics for the P3 component 
with 60 Hz line noise.
Figure S16. Data quality metrics for the P3 component 
with white noise.
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Figure S18. N400 artifactual peak percentage and data 
quality metrics.
Figure S19. Data quality metrics for the N400 component 
with 60 Hz line noise.
Figure S20. Data quality metrics for the N400 component 
with white noise.
Figure S21. Data quality metrics for the N400 component 
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Figure S22. LRP artifactual peak percentage and data 
quality metrics.
Figure S23. Data quality metrics for the LRP component 
with 60 Hz line noise.
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with white noise.
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Figure S26. ERN artifactual peak percentage and data 
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Figure S27. Data quality metrics for the ERN component 
with 60 Hz line noise.
Figure S28. Data quality metrics for the ERN component 
with white noise.
Figure S29. Data quality metrics for the ERN component 
with pink noise.
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